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Abstract

The characterization of the longitudinal density profile or bunch shape
of picosecond and sub-picosecond relativistic particle bunches is a funda-
mental requirement in many particle accelerator facilities, since knowledge
of the characteristics of the accelerated beams is of utmost importance for
the successful development of the next generation light sources and linear
colliders. The development of suitable beam diagnostics, non-invasive and
non-intercepting, is thus necessary to produce and control such beams. First
experimental evidences of the non-intercepting and non-destructive nature
of DR diagnostics are presented.

The precise longitudinal bunch distributions downstream of the second
bunch compressor (DBC3) of the DESY TTF VUV-FEL have been recon-
structed using a frequency-domain technique based on the autocorrelation of
coherent diffraction radiation (CDR). A Kramers-Kronig analysis has then
been applied to derive the minimal phase.

The autocorrelation of diffraction radiation coming from a thin conduct-
ing foil placed in the vacuum chamber has been obtained using a Martin-
Puplett interferometer and sub-millimeter radiation.

The measurement and the reconstruction of the longitudinal bunch dis-
tribution are discussed in detail showing also the strong dependence of the
bunch length on the accelerating module phase.

Due to the low and high frequency suppression, introduced by the exper-
imental apparatus, only a portion of the CDR spectrum participates to the
reconstruction of the longitudinal bunch profile. The knowledge of the system
frequency response, in particular in the millimeter and sub-millimeter range
is then crucial in order to correct the results and extrapolate a bunch shape
as close as possible to the real one. At this purpose, a precise characteriza-
tion over three different frequency regions of the Golay cell detector used for
the measurement is also discussed, thus extending the cell calibration into
the long wavelengths region.



Outline

The PhD thesis has been developed at the DESY VUV-FEL in the framework
of the SPARC collaboration, with the purpose of both transferring the know-
how and sharing hardware of the bunch length measurement at SPARC. The
measurement is planned to be performed in the SPARC phase 2, when the
installation and operation of the bunch compressor is foreseen, being the
bunch length too long (2 mm) for the interferometer technique to be applied
in the early operation.

The thesis is organized as follows. The first chapter is a brief overview
of the FEL principle of operation, ultra-high brilliance electron beams (high
peak current, small transverse emittance) being highly required for the pro-
duction of FEL radiation. The theory background concerning the bunch
length measurement, radiation source and data analysis is treated in chap-
ter 2. Chapter 3 illustrates the experimental apparatus used to measure the
bunch length and gives a detailed description of the detecting system, in-
cluding the detector frequency response up to few millimeters. Finally the
bunch length characterization is given in chapter 4 where experimental data
are discussed.

Appendix sections are dedicated to VUV-FEL and SPARC machine pa-
rameters (appendix A), transmission of the millimeter wave materials (ap-
pendix B), details on the calibration of the Golay cell detector (appendix C)
and quantitative approach to Fourier transform spectroscopy (appendix D).
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Chapter 1

Introduction

The characterization of electron beams is of primary interest in many par-
ticle accelerator facilities, since a detailed knowledge of either transverse or
longitudinal size of particle beams is much needed for the successful de-
velopment of the next generation light sources, i.e. Free-Electron Lasers
(FEL) [1], [2], [3] and new generation linear colliders [4]. The development
of suitable beam diagnostics is thus necessary to produce and control such
beams.

The longitudinal bunch distribution downstream of the second bunch
compressor, named DBC3, at the DESY Tesla Test Facility Vacuum Ul-
traviolet Free-Electron Laser (TTF VUV-FEL) has been reconstructed using
a frequency-domain technique [5] based on the autocorrelation of coherent
diffraction radiation (CDR). An overview of the TTF VUV-FEL is given
in section 1.2 and a more detailed description of its injector and the two
magnetic compressors involved in this work is reported in chapter 3.1.

A Martin-Puplett interferometer is used to obtain the autocorrelation of
coherent diffraction radiation in the sub-millimeter wavelength range coming
from a thin conducting foil placed in the vacuum chamber. The diffraction
radiation theory from both an infinite and a finite size target, in the far-field
and near-field approximation, is described in chapter 2, where the theory of
coherent radiation diagnostics is also presented.

Limits of a frequency domain technique for bunches whose shape is not
well known and ideas about how to overcome them are discussed.

Precise characterization over three different frequency regions of the Go-
lay cell detector used for the measurement is also discussed in chapter 3.5,
giving for the first-time a calibration of such a cell in the mm-wavelength

2



region.

1.1 FEL Basic Principle

As already pointed out, short bunches with high peak current, together with
small relative energy spread (∆γ

γ
) and small normalized transverse emittance1

(εn), are fundamental features to be reached and preserved during operation
of electron beams driving Free-Electron Lasers.

In this section, we shall summarize the FEL working principle and discuss
how these parameters are related to the FEL gain length2 Lg = λu

4π
√

3ρ
(λu

and ρ are defined later), power P and radiation wavelength λr.
The main difference between a Free-Electron Laser and a conventional

laser is the gain medium. In a FEL electrons are not bound to the quantum
states of an optical medium, but to a magnetic device, the undulator, shown
in figure 1.1.

Figure 1.1: Sketch of the undulator.

Electrons, forced by the undulator magnetic field to oscillate transversely
to the direction of propagation, emit the so-called undulator spontaneous
radiation, which shows a sharp peak when the resonance condition

λr =
λu

2γ2

(
1 +

K2

2

)
(1.1)

1The normalized transverse emittance, εn = γεg, is the area, corrected by the electron

Lorentz factor, occupied by the beam in the 2D transverse phase space, εg being the

geometric emittance. It is typically measured in units of π mm mrad (size x angular

divergence).
2In the 1D FEL theory, it is defined as the length necessary to the radiation field to be

increased of e, the Napier’s constant.
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is satisfied, λu being the undulator period, γ the electron beam Lorentz factor
and K the undulator parameter. The latter, defined as K = eB0λu

2πm0c2
where B0

is the maximum amplitude of the magnetic field and m0 the electron mass, is
a measure of the on-axis undulator magnetic field once the undulator period
is fixed.

In a Self-Amplified Spontaneous Emission (SASE) FEL, the undulator
spontaneous radiation is the seed from which the emission of stimulated
radiation grows. The FEL gain, proportional to the electron peak current, is
maximized by compressing the electron beam at relatively high energy so that
transverse and longitudinal space charge forces are negligible3. The bunch
compression is performed by introducing an energy deviation, correlated with
the longitudinal position z in the bunch and then passing the bunch through
a magnetic system where the path length is energy dependent. Compression
increases both the peak current and, because the longitudinal emittance4 εL

is conserved, the energy spread.
Figure 1.2 shows the dependence of gain length on current [6]. The in-

crease in peak current produces a significant reduction of the gain length,
resulting in a shorter FEL saturation length. The increase in peak current
has to be balanced thus against the increase in the beam energy spread.

Finally, during acceleration to high energy and compression of the beam,
the beam emittance has to be preserved and delivered to the undulator.
However, the requirements for lasing on the emittance and energy spread only
need to be maintained over a distance λr/ρ, called cooperation length, much
shorter than the bunch length; ρ being the dimensionless FEL parameter,
typically of the order of 10−3. The transverse emittance integrated over a
distance of the order of the cooperation length is then called slice emittance.

The relation between these quantities and the FEL main parameters is
given by [7] through the following scaling laws (Eq. 1.2) showing the key role

3In the accelerator straight sections, space charge forces on the bunch scale linearly

with the beam current (with given transverse dimensions) and inversely with the square

of the beam energy ( I
γ2 ), while in bending magnet systems, such as bunch compressors,

they scale like (σx

R )3/2, where σx is the beam size and R the bending radius.
4It is defined as the area, divided by π, of the ellipse in the longitudinal phase

space. Choosing as longitudinal phase space variables the RF phase, φ, and the rel-

ative momentum spread, ∆p
p , which is assumed to be equal to the relative energy

spread, ∆E
E , for ultra-relativistic beams, the rms longitudinal emittance is defined as

εL =
√

< φ2 >< (∆p
p )2 > − < φ∆p

p >2.
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Figure 1.2: Gain length as function of the electron beam peak current (Sim-

ulation with GENESIS 1.3). Beam parameters: Ee = 2 GeV , λr = 10 nm,

εn(slice) = 1 π mm mrad, ∆γ
γ

= 0.1%.

of ∆γ
γ

and εn in order to get short radiation wavelength in few gain lengths:

λr,cr ∝ εn

γ

∆γ

γ
I−1/2 (1.2)

Lg,cr ∝ εn

γ
γ5/2I−1/2 (1.3)

P ∝ exp(
z

Lg

) (1.4)

Equation (1.2) shows a linear dependence of the radiation wavelength,
λr,cr, on both relative energy spread and transverse emittance, and on the
peak current as I−1/2. Since neither εn nor ∆γ

γ
can be reduced indefinitely to

get wavelengths in the range of VUV-X, a peak current of the order of kA
and electron beam energy of the order of a GeV are required.

1.2 The TTF VUV-FEL

The TESLA Test Facility (TTF) has been designed and built to produce
an electron beam of extremely high quality in terms of emittance, energy
spread and peak current. The TTF-Phase2 linac has been upgraded to drive

5



a SASE FEL facility, named VUV-FEL [8], and is shown in Fig. 1.3. An
overview of the expected FEL parameters both in the short wavelength and
in the present operation mode of the TTF VUV-FEL is given in appendix
A.

Figure 1.3: Sketch of the VUV-FEL boost.

Electron bunch trains of up to 4 nC charge and repetition rate of up
to 5 Hz are generated by a laser-driven radio-frequency (RF) photocathode
electron gun, the bunch repetition rate being 1 MHz. In order to reduce
space charge effects, the laser pulse shape should ideally be rectangular,
both transversely and longitudinally, having a length of 20 ps (FWHM).
The design rms bunch length at the gun exit is 2.2 mm. Before entering
the undulator, composed of six 5 m long sections, the beam passes through
seven accelerating modules each consisting of eight nine-cell superconducting
1.8 K niobium RF cavities operating at 1.3 GHz and two bunch compressors
(named BC2 and BC3 for historical reasons). The last two modules, ACC6
and ACC7 are needed to reach the design electron energy of 1 GeV .

At present, electrons are accelerated to an energy of 127 MeV in the first
module (ACC1) and pass through the first bunch compressor (BC2) where
the bunch is shortened by a factor of up to eight. Downstream from BC2,
modules ACC2 and ACC3 increase the energy to 380 MeV and the bunch
undergoes a second compression (BC3) by a factor of up to five. In Chapter
4, the strong dependence of the bunch size on the accelerating RF phase will
be shown.

Our experimental setup is placed immediately downstream from BC3.
Details on experimental components and techniques, e.g. diffraction radiator,
vacuum window, interferometer components and their alignment, are given
in Chapter 3.
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1.3 Different techniques to measure the bunch

length

Along the whole TTF tunnel several experiments based on coherent radiation
diagnostics [9] using different radiation sources, e.g. synchrotron, transition
and diffraction radiation, are installed and the spectral distribution of the
radiation is measured with various instruments, for example Martin-Puplett
interferometers or grating spectrometers. However, since none of them allow
the bunch shape to be fully reconstructed due to the ambiguity of the inver-
sion process, several other, possibly more powerful devices mostly in the time
domain are also being investigated at the VUV-FEL: the streak camera, the
LOLA5 deflecting cavity and the electro-optical sampler (EOS) [10].

The main advantage of a time domain method is due to the fact it is di-
rectly sensitive to the longitudinal charge distribution. The most well-known
one is the streak camera which though, because of its 1 ps resolution limit,
is inadequate for sub-ps long bunches. The LOLA experiment uses a trans-
verse RF mode in a cavity to separate the head from the tail of a bunch:
the deflecting structure imparts a transverse kick to the particles within the
bunch which results in a transverse offset observed on an optical transition
radiation (OTR) screen. The technique has though the drawback of being in-
vasive. EOS is instead non-invasive and therefore much more suitable. It uses
the dependence of the birefringence of a non-linear crystal on the strength
of an external electric field. The superposition of a laser pulse, triggered
by the arrival on the bunch generated CTR produces a detectable rotation
of the laser polarization. The polarization information is then transformed
in intensity information by means of optical elements traversed by the laser
beam. The size of the EOS signal depends on the energy of the coherent
transition radiation (CTR) pulse, the crystal orientation and the orientation
of the polarization planes of the incoming CTR and laser radiations.

In the present work, a frequency domain technique based on the analysis
of the far-infrared radiation (FIR) spectrum of coherent diffraction radia-
tion (CDR) has been used to measure the bunch length. Our choice to use a
DR source makes even a frequency domain technique a non-invasive and non-
intercepting diagnostics. Measurements during standard FEL operation were
indeed performed as shown in chapter 4. The drawback due to the ambigu-
ous reconstruction of the form factor cannot be completely overcome, even

5The name comes from its designers: Greg LOew, Rudy Larsen and Otto Altenmueller.

It was built at SLAC in 1968.
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though the spectrum is calculated taking into account the transfer functions
of each component in the setup. However, its main deficiency is the ambigu-
ity of retrieving the bunch profile from the measured CDR spectrum, since
only the square of the Fourier transform of the longitudinal beam profile can
be evaluated, getting no information on the phase. A Kramers-Kronig anal-
ysis has to be applied, allowing to find the minimum phase value consistent
with the measured module [11].

Contrary to [12] whose main purpose was to demonstrate that CDR can
be effectively used as electron beam diagnostics, the present work wants
to provide a complete characterization of the electron beam longitudinal
profile by taking into account factors, such as the detector frequency response,
which influence the profile reconstruction. At this purpose a detailed detector
calibration has been performed and presented in chapter 3. Results from the
detector calibration have been presented to the FEL Conference 2005.
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Chapter 2

Theory

The theory background concerning the bunch length measurement, radiation
source and data analysis is treated in the present chapter. First an overview
of the emission and propagation mechanisms of radiation for ultra-relativistic
particles is given and the transition and diffraction radiation spectra for both
single-particle emission and emission from an electron bunch are discussed,
showing how information on the bunch longitudinal dimension can be in-
ferred from them. The theoretical approach to the data analysis and the
reconstruction of the electron bunch profile is also discussed, based on the
Kramers-Kronig dispersion relation, which takes advantage of the analogy
with the input-output response function analysis and allows to express the
real part of any spectral function as an integral involving the imaginary part
(and vice-versa).

2.1 Diffraction Radiation

Many relativistic emission processes might be used for electron beam diagnos-
tics, i.e. synchrotron radiation, Cherenkov radiation, Smith-Purcell radiation
[13], transition and diffraction radiation, the last two being considered two
aspects of the same phenomenon. Radiation is produced when a charged
particle crosses the discontinuity between two media both directly (transi-
tion radiation, TR) and at a distance close to the edge of a metallic screen
(diffraction radiation, DR), if the distance, ρ, to the target is such that

ρ ≤ γλ

2π
(2.1)
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λ being the emitted radiation wavelength depending on diffractive effects
and γ the electron Lorentz factor showing the Lorentz transformations of
electromagnetic fields.

The radiation produced is due to the presence of optical inhomogeneities
in the space, where the field of travelling charge induces, on the target surface,
currents changing in time, and these currents generate radiation.

The TR process was calculated analytically by solving the Maxwell equa-
tions in the assumptions of infinite size target, infinitely thin and ideally
flat, perfectly conducting material and far-field approximation, by Ginzburg-
Frank, the spectral and spatial energy distribution from a single electron
being described by the formula [14]

d2U

dωdΩ
=

e2

4π3ε0c

β2 sin2 ϑ

(1− β2 cos2 ϑ)2
(2.2)

with β = v
c

and ϑ the observation angle. The angular distribution is shown in
Fig. 2.1, where a feature, characteristic of radiation emitted by an accelerated
charge in ultra-relativistic motion, is evident, the intensity being zero at
ϑ = 0 and maximum at ϑ ' 1

γ
for γ À 1.
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Figure 2.1: Angular distribution of the TR intensity according to the

Ginzburg-Frank formula.

Furthermore, for frequencies well below the plasma frequency, ωp, of the
metal and in the limits of validity of the Ginzburg-Frank formula, the spec-
tral distribution of TR radiation does not depend on the frequency. In the
following sections, we will see that in practice the assumptions of infinite size
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target and far-field approximation are not fulfilled, causing the spectrum be
frequency-dependent [15].

TR, as DR, has the tendency to propagate in two main directions along
the trajectory of the particle, in the forward direction (forward transition or
diffraction radiation, FTR or FDR) and in the backward direction (backward
transition or diffraction radiation, BTR or BDR), within a cone whose axis is
coincident with the direction of propagation of the particle and with angular
aperture proportional to 1

γ
. In case the target is oriented with angle θ0

with respect to the direction of the incident particle, the backward radiation
propagates in the direction of the mirror reflection. The θ0 = 45o geometry
(Fig. 2.2) is the most suitable one from the experimental point of view
since the emitted radiation is well separated from the electron beam, being
orthogonal to the direction of the particle velocity. Furthermore, for ultra-
relativistic particles the two lobes at 45o with respect to each other do not
overlap, resulting in independent angular distributions.

Figure 2.2: Emission geometry for a target tilted with a 45 angle.

Assuming a highly conducting, reflecting surface and γ À 1, the angular
distributions of the radiation emitted in both cases, normal and 45o incidence
target with respect to the direction of propagation, are similar and we are
allowed to assume the finite size target oriented at 45o equivalent to the one
placed at 90o with respect to the beam line whose horizontal dimension l
becomes l sin(θ0).

In case of DR produced by a charged particle passing exactly in the
middle of an aperture in a metallic screen, no radiation is emitted at θ = 0
and the angular distribution is similar to the TR one. For this reason, DR
can be treated as TR emitted by a surface with a cut on it which gives rise
to a diffraction pattern. For the Babinet principle1, the DR spectrum can be

1The diffraction fields of a diffracting screen are equivalent to those of the complemen-
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therefore deduced by simply subtracting from the TR spectrum for a target
of size b, the TR spectrum for a target of size a < b.

Beyond the simple emission geometry, DR allows a non-intercepting and
non-invasive diagnostics, the great interest in this type of radiation coming
also from both the possibility of generation of intense radiation beams in
millimeter and sub-millimeter wavelength region and beam diagnostics based
on both incoherent and coherent diffraction radiation. In section 2.2 we will
discuss about the information we can obtain on the electron bunch structure
by studying coherent radiation, independently on the source used.

In the following subsections we will first introduce the radiation mecha-
nism of ultra-relativistic particles, then derive the single-particle spectrum
from both a slit in an infinite size target and a rectangular aperture in a
finite size rectangular target. In the case of circular geometry, the math-
ematical derivation can be performed analytically only for the case of the
particle going exactly through the center of the hole, the formula being ex-
tremely complicate otherwise. For this reason and because the mechanical
manufacture is more precise for a slit than a hole, the rectangular geometry
has been preferred.

2.1.1 Virtual Photon Method

The radiation emission mechanism can be described with the Weizsäcker-
Williams method or virtual photon method [16], the essence of the method
being the replacement of the particle field by the field of a plane wave.

Consider an electron, e, which moves uniformly with velocity ~v along the
z-axis; let denote K ′ its rest reference system and K the system solidal with
an observer located at the point P ≡ (0, ρ, 0) from the charge (Fig. 2.3).

The fields corresponding to a boost along the z-axis with speed βc from
K to K ′ are transformed by means of Lorentz transformations so that

E ′
x = γ(Ex + βBy) B′

x = γ(Bx + βEy) (2.3)

E ′
y = γ(Ey − βBx) B′

y = γ(By − βEx)

E ′
z = Ez B′

z = Bz

γ being the electron Lorentz factor.
At t = t′ = 0, the origins of the two coordinate systems coincide. The

tary screen.
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Figure 2.3: Inertial frames for the evaluation of the electromagnetic field for

a particle of charge q moving with constant velocity ~v along the z-axis.

point P in the system K ′, where the fields must be evaluated, has coordinates

x′ = x = 0

y′ = y = ρ

z′ = γ(z − vt) = −γvt

t′ = γ(t− v

c2
z) = γt

the distance to the source being r′ =
√

x′2 + y′2 + z′2 =
√

ρ2 + γ2v2t2. In
the rest frame K ′ of the electron, the electric and magnetic fields at the
observation point are given by [14]

E ′
x = 0 B′

x = 0 (2.4)

E ′
y =

e

4πε0

ρ

(ρ2 + v2t2γ2)3/2
B′

y = 0

E ′
z = −γ

e

4πε0

evt

(ρ2 + v2t2γ2)3/2
B′

z = 0

The transformed fields in the observer reference system K are therefore ob-
tained by using the inverse of 2.3 so that the non-vanishing components are

Ey = γE ′
y =

e

4πε0

γρ

(ρ2 + v2t2γ2)3/2
(2.5)

Ez = E ′
z = − e

4πε0

eγvt

(ρ2 + v2t2γ2)3/2

Bx = γβE ′
y = βEy

Equations 2.5 show the main difference between the electromagnetic field of
a particle and that from light waves: the latter being transverse, while the
former has a component of the electric field always directed along ~v.
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However, for ultra-relativistic particles (γ À 1), whose velocity tends to
the speed of light, v → c, the electromagnetic field of a particle acquires
the properties of electromagnetic waves. Denoting with Ep and En the com-
ponents of the electric field parallel (Ez) and normal (Ey) to the direction
of motion, respectively, figure 2.4 shows how as γ increases, the peak fields
increase proportionally, their duration though going in inverse proportion.
The time interval over which the fields are appreciable is ∆t ' ρ

γv
, where

ρ, called impact parameter, is the distance of the particle to the obstacle.
Figure 2.4 shows also that in the transverse direction, the field strength is
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Figure 2.4: Electric fields at the observation point P as a function of time.

larger than the longitudinal component by a factor of γ, which confirms the
replacement of the particle field by the field of the light waves.

The harmonic content of the electron field varying in time is obtained
by Fourier transforming the radial electric field, ~E, at the position of the
radiator, z = 0 (Eq. 2.6) and with the assumption Ep ¿ En, the longitudinal
field component can be neglected,

En(ω) = γ
e

4πε0

ρ

2π

∫ ∞

−∞

e−iωtdt

(ρ2 + v2t2γ2)3/2
(2.6)

=
eω

(2π)3/2ε0γv2
K1

(ρω

γv

)

K1 being the modified Bessel function. The electric field transverse com-
ponent is then proportional to ρω

γv
K1(

ρω
γv

), whose width at half maximum is
roughly 0.6 for the argument equal to 1, as shown in Fig. 2.5, where the
function xK1(x) is plotted.
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Figure 2.5: Modified Bessel function of second order.

Recalling that v = βc and ω = 2πc
λ

and assuming β ∼ 1, a strong field is
detected and radiation emitted if the following condition is satisfied

ρω

γv
< 1 ⇔ ρ ≤ γλ

2π
(2.7)

Radiation is therefore confined within a disk of radius γλ. Contrary to the
plane electromagnetic wave, the particle field depends on the distance from it
(Eq. 2.7). This result gives also an idea of the application limits of the infinite
size condition, whose consequences are the topic of the following subsections.

2.1.2 Diffraction Radiation from a Slit between Two

Semi-Planes

As introduced in the previous subsection, for fast particles the particle field
becomes equivalent to a set of plane waves, allowing the electromagnetic
field of the travelling particle to be expressed by the field of virtual photons.
The transition or diffraction radiation field can therefore be considered as
the scattering of the virtual photons field due to the target. The radiated
energy is determined by solving the Kirchoff integral [18] which, in the far-
field approximation, can be considered as the Fourier transform on the target
surface of the field of virtual photons.

Consider an electron, moving uniformly along the z-axis with velocity
v → c passing through a slit, whose edge is parallel to the x-axis, between
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two semi-planes, assumed to be flat, absolutely opaque and infinitely thin
(Fig. 2.6). The electron trajectory is perpendicular to the plane of the
target coinciding with the plane xy.

Figure 2.6: Sketch of the electron passing through an aperture in an infinite

size target.

The diffraction radiation field from a slit between the two semi-planes
can then be obtained from the Huygens-Fresnel integral over the area S2 =
S∞ − S1, calculated from a thin, ideal conducting metal screen of infinite
extent S∞ on which a slit of material of area S1 is removed. The DR field
can then be expressed as [16]

E(ω) = − 1

(2π)2

∫

S2

E0(xs, ys)

R′ ei ω
c

R′dS (2.8)

with R′ =
√

D2 + (x− xs)2 + (y − ys)2 the distance from an element of the
emitting area, dS = dxsdys, to the point P (see Fig. 2.7). The incident field,
~E0, is the field associated to the relativistic particle travelling uniformly along
the z-axis and given by the expression

E0
x,y(xs, ys) = − ie

2πv2
ei ω

v
z

∫
κx,ye

i(κxxs+κyys)

κ2
x + κ2

y + α2
dκxdκy (2.9)

κx, κy being the projections of the photon vector ~k on the xy plane and
α = ω

γv
. Expression 2.9 is equivalent to the one (Eq. 2.6) found in the

previous subsection.
The origin of coordinates is chosen at the intersection point between the

particle trajectory and the slit plane. R′ can then be written, as long as R
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Figure 2.7: Diffraction radiation geometry.

is much larger than the aperture dimensions, as

R′ =
√

D2 + x2 + y2 + x2
s + y2

s − 2(xxs + yys) (2.10)

= R

√
1 +

ρ2
s

R2
− 2

n̂ · ~ρs

R

' R− n̂ · ρs +
ρ2

s

2R

with R2 = D2 +x2 +y2 and ρ2
s = x2

s +y2
s , n̂ is the unit vector in the direction

of R. The total field at the point P becomes

E(P, ω) = − ei ω
c
R

(2π)2

∫

S2

E0(xs, ys)e
−i~k· ~ρsei ω

c

ρ2
s

2R dS (2.11)

where ~k = ω
c
n̂ is the photon wave vector. The phase factor proportional to

ρs is of Fraunhofer type and is responsible for fields at far distance from the
source, while the one depending on ρ2

s is the first order Fresnel correction
to the far-field approximation. In what follows, we will assume valid the
Fraunhofer approximation, the DR field being expressed by

E(P, ω) = − 1

(2π)2

∫

S2

E0(xs, ys)e
−i~k· ~ρsdS (2.12)

Let assume the particle is moving exactly in the middle of the aperture,
at a distance h

2
from the origin of coordinates to the slit edges; substituting
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Eq. 2.9 in Eq. 2.12 and integrating the field parallel to edge, for example,
over x from −∞ to ∞ and over y from −∞ to −h

2
and from h

2
to ∞, we

obtain

Ex(kx, ky) =
1

(2π)2

ie

2πv2

[ ∫ ∞

−∞
dys −

∫ h
2

−h
2

dys

]
(2.13)

∫ +∞

−∞
dxse

−i(kxxs+kyys)ei(κxxs+κyys)

∫ ∞

0

κx

κ2
x + κ2

y + α2
dκxdκy

the integral over y being written as the sum of two integrals: from −∞ to
∞ and from −h

2
to h

2
. Furthermore the integrals over dxs and dys are ”a

variabili separabili”, Eq. 2.13 can then be written as

Ex(kx, ky) ∝
[ ∫ ∞

−∞
dyse

−iys(ky−κy) −
∫ h

2

−h
2

dyse
−iys(ky−κy)

]
(2.14)

∫ +∞

−∞
dxse

−ixs(kx−κx)

∫ k

0

κxdκxdκy

κ2
x + κ2

y + α2

the integral over dxs and dys from −∞ to ∞ being δ-functions, whose con-
tribution is different from zero if and only if κx,y = kx,y, and the integral over
the vertical slit aperture is the typical sin x

x
function. Ex(kx, ky) can then be

written as

Ex(kx, ky) ∝
∫ ∞

−∞

kx

κ2
y + f 2

[sin h
2
(ky − κy)]

(ky − κy)
dκy + (2.15)

+
kx

k2
x + k2

y + α2

with f =
√

k2
x + α2. Finally, the fields of radiation emitted by an electron

moving through a slit in a perfectly conducting, infinite screen and in the
Fraunhofer approximation are found by considering the function analytic
extension to the complex plane where the integral has three poles at κy = ±if
and κy = ky, so that applying the residual theorem [17], the expression for
the parallel polarization, as well as for the orthogonal one, have the form

Ex(kx, ky) =
iekx

4π2cf

{e−
h
2
(f−iky)

f − iky

+
e−

h
2
(f+iky)

f + iky

}
(2.16)

Ey(kx, ky) =
e

4π2c

{e−
h
2
(f−iky)

f − iky

− e−
h
2
(f+iky)

f + iky

}
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where kx = k sin θ cos φ, ky = k sin θ sin φ, θ and φ being the polar and
azimuthal angle of radiation.

The DR spectral angular distribution is then

d2U

dωdΩ
=

d2U‖
dωdΩ

+
d2U⊥
dωdΩ

(2.17)

=
1

4πε0

e2ω2

4π2c
[|Ex|2 + |Ey|2]

Assuming the slit aperture h → 0 and in case of normal incidence, the result
reduces to the Ginzburg-Frank formula (Eq. 2.2). The comparison between
the TR and DR from a slit between two semi-planes angular spectra for a
frequency of 1 THz and a slit aperture of h = 5 mm is shown in Fig. 2.8.

Figure 2.8: Comparison between the DR spectrum for different apertures,

h = 5 mm and h = 0 (TR) at 1 THz.

2.1.3 Transition Radiation from a Finite Size Target

In this subsection we will discuss the importance of the size target in the
modulation of TR power spectrum and show how far from the Ginzburg-
Frank formula (Eq. 2.2) it is, being a complicate function of beam energy,
target extension, frequency and angle of emission [15].

Since the extent of the particle field is of the order of λγ, for high electron
energy and large emitted wavelength, it may exceed the dimension of the
radiation target, resulting in the spectrum to be frequency dependent, the
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Ginzburg-Frank formula being not valid anymore. In practical cases, for
γ ≈ 103 and λ ≈ 1 mm, the target size should be much larger than 1 m and
the finite size effect is always affecting measurements, resulting in a strong
suppression of low-frequencies.

Following the approach already discussed in the previous section, the field
generated by an electron at a distance R from the radiating target, which
is assumed to be rectangular and of finite size, h, l being respectively the
vertical and horizontal dimensions, is given by integrating Eq. 2.12 over the
target surface, i.e. x from − l

2
to l

2
and y from −h

2
to h

2
, so that

Ex,y ∝
∫ l

2

− l
2

dxs

∫ h
2

−h
2

dyse
−i(kxxs+kyys) (2.18)

∫ ∞

−∞
dκxdκy

κx,ye
i(κxxs+κyys)

κ2
x + κ2

y + α2

which becomes

Ex,y ∝
∫ ∞

−∞
dκxdκy

κx,ye
i(κxxs+κyys)

κ2
x + κ2

y + α2
(2.19)

sin[ l
2
(kx − κx)]

kx − κx

sin[h
2
(ky − κy)]

ky − κy

The integral over κx and κy can be evaluated by applying the integration
methods of the analytic functions along proper close paths. The first integral
is solved integrating the function

f(z) =
zei l

2
(kx−z)

(z2 + f 2
y )(kx − z)

(2.20)

along the integration path shown in Fig. 2.9, being the contribution of the
semi-circles to the integral negligible in the limit r1 → ∞ and r2 → 0.
z = κx + iζ and f 2

y = κ2
y + α2.

The integral over κy is partially solved following the same procedure, the
rectangular geometry allowing not to express the transition field in terms
of elementary functions of kx and ky. The final expression for TR fields for
horizontal and vertical polarization components from a finite size rectangular
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Figure 2.9: Contour along which the integral over κx is evaluated.

target are then given by [12]

Ex(kx, ky) =
ek

2π2vR

(2π)2kx

k2
x + k2

y + α2
(2.21)

{[
1 +

e−
h
2

√
k2

x+α2

√
k2

x + α2
(ky sin(

h

2
ky)−

√
k2

x + α2 cos(
h

2
ky))

]
+

− 4π

∫ ∞

−∞
dκy

sin[h
2
(ky − κy)]

ky − κy

e−
l
2

√
κ2

y+α2

(kx cos( l
2
kx) +

√
κ2

y + α2 sin( l
2
kx))

κ2
y + k2

x + α2

}

Ey(kx, ky) =
ek

2π2vR

(2π)2ky

k2
x + k2

y + α2

{[
1 +

e−
l
2

√
k2

y+α2

√
k2

y + α2
(kx sin(

l

2
kx)−

√
k2

y + α2 cos(
l

2
kx))

]
+

− 4π

∫ ∞

−∞
dκy

sin[ l
2
(kx − κy)]

kx − κy

e−
h
2

√
κ2

y+α2

(ky cos(h
2
ky) +

√
κ2

y + α2 sin(h
2
ky))

κ2
y + k2

y + α2

}

The finite dimensions of the target produce a severe shift of the peaks, the
greater the more the condition γλ much greater than the target size is far
from being verified as shown in Fig. 2.10. In the limit h, l À γλ

2π
the target can

be considered of infinite extent and the angular distribution is well described
by the Ginzburg-Frank formula.
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Ginzburg-Frank formula and with correction due to the finite size target

at 1 THz.

2.1.4 Diffraction Radiation from a Rectangular Hole

in a Rectangular Target

This subsection concerns the derivation of the expression for DR spectrum
from a rectangular aperture in a finite rectangular target, keeping in mind
the result from the previous subsection and applying the Babinet principle.

In case of DR both low and high frequencies suppression may be ob-
served at the same time due to the slit aperture, resulting in a more difficult
reconstruction of the bunch profile.

Let assume the electron goes through the middle of the rectangular aper-
ture with velocity ~v directed along the z-axis. The DR field from a rectan-
gular hole, whose dimensions are (l, d), in a rectangular target can then be
expressed, according to the Babinet’s principle, as the difference between the
TR fields for a target of vertical dimension equals to 2h + d and for a target
of vertical dimension d so that

EDR
x,y (kx, ky) = ETR

x,y (kx, ky; l, 2h + d)− ETR
x,y (kx, ky; l, d) (2.22)

which becomes

EDR
x,y (kx, ky) = 4

ek

2π2vR

∫ ∞

−∞

dκxdκyκx,y

κ2
x + κ2

y + α2

sin[ l
2
(kx − κx)]

kx − κx

(2.23)

{sin[(h + d
2
)(ky − κy)]

ky − κy

− sin[d
2
(ky − κy)]

ky − κy

}
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2.2 Coherent Radiation Theory

When a bunch of electrons moves in proximity of an edge, each electron in
turn emits radiation, the effect of this ”collective” emission on the diffraction
radiation spectrum depends on the bunch longitudinal dimension.

Consider an electron bunch whose center of mass is the origin of a coor-
dinate system (Fig. 2.11).

Figure 2.11: Schematic view of the bunch emission geometry.

Let us assume R as the distance from the source to the detector and n̂j

the unit vector which selects the observation direction for the jth particle, ~r
being the position vector of the jth electron relative to its bunch center. Let

Ej = exp
(
i2π

λ
(ct− n̂ ·~rj)

)
be the electric field generated by the jth electron.

In the assumption that the distance from the source to the detector is
much larger than the extent of the bunch, R >> σz, the total field is given
by the sum of the fields of each of the N particles and the total intensity can
be written, in the limit of the Fraunhofer scalar theory, as

Itot(ω) = Isp(ω)
∑

j,k

EjE
∗
k (2.24)

with Isp(ω) the intensity of radiation emitted by a single electron at frequency
ω, where the sum over the two indexes can be expressed in terms of a sum
of two terms as described in Eq. 2.25

Itot(ω) = Isp(ω)
(
N +

N∑

j 6=k

exp
(
i
ω

c
n̂ · (~rj − ~rk)

))
(2.25)
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By averaging the expression in parenthesis over the positions of all the par-
ticles distributed along the bunch, the sum can be replaced by an integral

Itot(ω) = Isp(ω)
[
N + N(N − 1)

∫ ∫
drdr′C2(~r, ~r

′ei ω
c

n̂·(~r−~r′))
]

(2.26)

where C2 is the two particles distribution function normalized such that

∫ ∫
drdr′C2(~r, ~r

′) = 1 (2.27)

In the assumption the two particles are not correlated, the two particle dis-
tribution function can be written as C2(~r, ~r

′) ≈ S(~r)S(~r′), furthermore being
S(~r) real S(~r) = S∗(~r), the sum in Eq. 2.25 becomes

N∑

j 6=k

ei ω
c
n̂·(~rj−~rk) = N(N − 1)

∫ ∫
drdr′C2(~r, ~r

′)ei ω
c
n̂·(~r−~r′) (2.28)

= N(N − 1)
∣∣∣
∫

3D

d~rS(~r)ei ω
c
n̂·~r

∣∣∣
2

with the distribution function normalized such that
∫∞
−∞ S(~r)d~r = 1. The

total spectrum can then be written as

Itot(ω) = Isp(ω)[N + N(N − 1)F (ω)] (2.29)

where

F (ω) =
∣∣∣
∫

3D

d~rS(~r)ei ω
c

n̂·~r
∣∣∣
2

(2.30)

is the electron bunch 3D form factor. Two terms contribute therefore to
the total intensity (Eq. 2.29): the first one, proportional to the number of
particles, N , is the total intensity if the particles radiate all incoherently, each
behaving independently one from the other; the second one, proportional to
N2, is dominant for short bunches when the N particles can be treated
as a single macro-particle and the phase relations between particles play a
fundamental role, the emission of radiation is then coherent.

As already mentioned, the TR or DR emission occurs mainly in two
directions, forward and backward, with a maximum intensity at an angle
ϑ ≈ 1

γ
. At small observation angles, ϑ ∼ 0, n̂ ‖ ~r, so that

F (ω) =
∣∣∣
∫ ∞

−∞
dzS(z)ei ω

c
z
∣∣∣
2

(2.31)
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where S(z) =
∫

Σ⊥
S(~r)dxdy is the 1D longitudinal distribution function of

particles in the bunch, integration is performed over slices of area Σ⊥ per-
pendicular to the z-axis. It follows that a measurement of the coherent
emission spectrum is a measurement of the form factor, providing informa-
tion about the longitudinal bunch distribution. However, a measurement in
this condition is not feasible since both TR and DR from a slit do not pro-
duce radiation at ϑ = 0, an off-axis observation is then needed. The scalar
product becomes then n̂ · ~r = x sin ϑ + z cos ϑ, depending on both observa-
tion angle and transverse dimensions. Because of an interference effect of
radiation which is emitted from different positions in the cross section of the
beam, both contribution will result in a measured bunch length longer than
the real one. For example, for a cylindrical bunch with radius ρ and length
σz, the form factor is

F (ω) ∝
∣∣∣J1(

ωρ
c

sin ϑ)
ωρ
c

sin ϑ

sin(ωσz

2c
cos ϑ)

ωσz

2c
cos ϑ

∣∣∣
2

(2.32)

where J1 is the first order Bessel function. It follows that for ϑ = 0, Eq.
2.32 gives the sinc-squared function typical for uniform-distributed electron
bunches. For large angles and big transverse beam size, the bunch length will
result longer than the real one. However, in the limit (assumed to be valid
from now on) 2πρ tan ϑ ¿ σz, corrections are not needed and the longitudinal
bunch distribution can be retrieved by Fourier-inverse transforming Eq. 2.31
as follows

S(z) =
1

πc

∫ ∞

0

dω
√

F (ω) cos
(ωz

c

)
(2.33)

only the cos-term being involved since S(z) is real. Eq. 2.33 does not allow
to get information on the bunch asymmetry due to the fact that it is a cosine
transform. Furthermore, even for a symmetric bunch, the result does not
define a unique bunch profile, since the phase information is missing.

The next section will treat a method to get the maximal information
about the bunch shape from the measured spectrum.

2.3 Kramers-Kronig Method

Even though the assumptions of non-negative and real electron distribution
have been done, there are infinite distributions which give the same auto-
correlation function, since its Fourier transform gives only the absolute mag-
nitude, |

√
F (ω)|, of the form factor. A method, based on Kramers-Kronig
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dispersion relation and suggested by [19], has been used to retrieve the phase
and eliminate the ambiguity in the reconstruction procedure. The method
takes advantage of the analogy with the input-output response analysis used
in optics. In this section an overview of the theory concerning the procedure
is given.

2.3.1 Contribution to the Form Factor

Let us reconsider the integral which defines the complex form factor F (ω) as
the product of an amplitude term A(ω) and a phase term eiψ(ω)

S(ω) =

∫ ∞

0

S(z)ei ω
c

zdz ≡ A(ω)eiψ(ω) (2.34)

so that

F (ω) = S(ω)S∗(ω) = A2(ω) (2.35)

ω = ωr + iωi being complex.
To apply the Kramers-Kronig relation, the electron bunch distribution

function has to fulfill these conditions:

1. S(z) = 0 ∀ z < 0

2. S(z) finite everywhere and E(ω) → 0 as 1/ω for |ω| → ∞
3. S(z) smooth and for z →∞ S(z) → z−2

The first condition expresses the causality principle, whose consequence is
that the spectral function A(ω) is a square-integrable function which can be
extended almost everywhere to give a function analytic in the upper half
complex plane.

Recalling the expression for the total emitted intensity (Eq. 2.29), we can
neglect the incoherent contribution with respect to the coherent part, which
dominates in the FIR region for sub-picosecond bunches. Therefore, the total
electric field emitted by a bunch of N electrons is linearly dependent on the
electric field emitted by the single electron as

~Etot(ω) =
√

N(N − 1)S(ω) ~E(ω). (2.36)

This describes a linear causal relation in analogy with the input-output re-
sponse function analysis used in optics to obtain the complex reflectivity at
an interface, where the integral in expression 2.34 is replaced by an integral
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over positive time due to causality. Hence, the function S(ω) defined in Eq.
2.34 is analytic for all complex values of ω in the upper half of the complex
plane and assuming it decays in a power law with |ω| → ∞ (condition 2.),
the Kramers-Kronig relation connecting the modulus and the phase is then
obtained introducing

ln S(ω) = ln A(ω) + iψ(ω) (2.37)

being a convenient way to separate the Fourier spectrum into real and imag-
inary parts.

Figure 2.12: Path of integration for the Cauchy integral.

The dispersion relation of Eq. 2.37 is therefore

ψm(ω) + ψBlaschke(ω) = −2ω

π
P

∫ ∞

0

dx
ln ρ(x)

x2 − ω2
+

∑
j

arg
(ω − ωj

ω − ω∗j

)
(2.38)

where ψm is the minimal phase, ψBlaschke is the phase of the Blaschke product
and ω∗j are the zeros of S(ω) in the upper half of the complex frequency plane,
P is the Cauchy principal value of the integral. ψBlaschke(ω) is zero if S(ω)
does not have any zero in the upper half plane. Zeros on the real axis give
no contribution to the phase.

The minimal phase evaluated from the first term of Eq. 2.38 is a good
estimation of the real phase if the form factor has no nearby zeros in the upper
half of the complex frequency plane. The minimal phase is then obtained
from the Kramers-Kronig relation (Eq. 2.37). The singularity at x = ω can
be removed by adding to Eq. 2.38 the term

−2ω

π
P

∫ ∞

0

dx
ln A(ω)

x2 − ω2
= 0 (2.39)
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Finally, the minimal phase is calculated from

ψm(ω) = −2ω

π

∫ ∞

0

dx
ln[A(x)/A(ω)]

x2 − ω2
(2.40)

Hence, from the measured form factor, F (ω), the amplitude term A(ω) can
be determined (Eq. 2.35) and used to calculate the frequency dependent
phase, ψm(ω), the complete dependence of the complex form factor on the
frequency being therefore evaluated.

By inverse Fourier transforming Eq. 2.34, the bunch density distribution
is obtained

S(z) =
1

πc

∫ ∞

0

dωA(ω) cos
[
ψm(ω)− ωz

c

]
(2.41)

depending only on the cos-term since S(z) is real. The information about the
asymmetry on the bunch density distribution is contained in the non-linear
contribution to the frequency-dependent phase factor ψm(ω).

2.3.2 Asymptotic Limits

Once the spectrum is measured, the form factor, and then the asymmetric
bunch shape, can be reconstructed entirely in both amplitude and phase.
However, due to the strong suppression of the spectrum at both low and
high frequencies, asymptotic forms for F (ω) are needed in both the low and
high frequency region. Furthermore, at high frequencies the signal is covered
by the background noise, a curve which describes how the form factor goes
to zero in this range is then needed.

Since the bunch distribution, S(z), is a real function, the modulus, A(ω),
of the spectral function is an even function of ω. Expanding Eq. 2.34 in a
power series of ω gives

S(ω) =
∞∑

n=0

in

n!

(ω

c

)n

< zn > (2.42)

where < zn >=
∫ σz

0
znS(z)dz is the nth moment of the distribution function,

the integral extending over a finite region due to the finite size, σz, of the
bunch. The low-frequency asymptote for the form factor is then found to be
a parabolic function

F (ω) → 1− cω2 for ω → 0 (2.43)
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c being a positive factor.
The high frequency asymptote is a more complicate issue since it depends

on the behavior of the bunch distribution, S(z), near the end points, which
are assumed to be at z = 0 and z = σz so that S(0) = S(σz) = 0. Integrating
by parts Eq. 2.34, we obtain

S(ω) ' ei ω
c

zS(z)

iω
c

∣∣∣
σz

0
− ei ω

c
zS ′(z)

(iω
c
)2

∣∣∣
σσz

0
+ ... (2.44)

the first term being zero because of the boundary conditions, the main contri-
bution coming from the term proportional to ω−2. Hence at high frequencies
the form factor varies as ω−4.
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Chapter 3

Experimental Setup

In the present chapter, an overview of the main linac components involved in
the measurement and a description of the experimental setup, i.e. diffraction
radiator, interferometer and detectors, is given. Results from the Golay cell
detector calibration are discussed, details can be found in Appendix C.

3.1 Injector and Bunch Compressors

The standard FEL operation of the TTF linac at 1 GeV electron energy
requires a peak current of 2.5 kA to produce radiation wavelength of 6 nm.

The RF gun, commissioned and characterized at PITZ (DESY Zeuthen)
[23], is a 1.5 cell L-band cavity, resonating at a frequency of 1.3 GHz and
powered by a 5 MW klystron. A high quantum efficiency Cesium Tellu-
rite (Cs2Te) photocathode [21], illuminated by a laser with wavelength of
262 nm, delivers electron bunches with charges up to 4 nC, depending on
the laser energy. A solenoid magnet, placed around the RF gun, focuses
the electron beam in order to reduce space charge induced emittance growth
[24].

Starting from 5 MeV electron energy and 2.2 mm rms bunch length at the
gun exit, the beam is accelerated to 127 MeV and compressed longitudinally
in a standard four bend magnetic chicane (BC2) as shown in Fig. 3.2. The
compression is obtained by changing the accelerating module phase such that
the electron bunch is accelerated on the rising slope of the RF electric field
(off-crest acceleration) (Fig. 3.1b), resulting in a different energy distribution
of the electrons in the bunch: on the head particles with lower energy than
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the nominal one and on the tail particles with higher energy. This momentum
kick can be described in the linear approximation by

∆E = Ecav cos
( 2πz

λRF

+ φ
)

(3.1)

where λRF is the RF wavelength, Ecav the maximum energy achievable if the
beam is injected into the linac on-crest1 and φ the off-crest phase.

The bunch enters then the magnetic chicane where higher energy electrons
follow a shorter trajectory than those with lower energy. The difference
path length gives lower energy particles a chance to catch up for efficient
compression, as shown in the sketch of a bunch compressor (Fig. 3.1a).

(a) Sketch of a magnetic chicane (b) Off-crest acceleration

Figure 3.1: Sketch of the compression mechanism.

Two additional accelerating modules (ACC2 and ACC3), placed before a
second bunch compressor (BC3), accelerate the beam further to 380 MeV .
BC3 is a 4-bend S-chicane compressor, designed [25] to minimize coherent
synchrotron radiation (CSR) effects, which can induce dramatic emittance
growth [22].

The two-stage compression is necessary to avoid space charge induced
emittance dilution and to reduce non-linear effects due to RF fields. The
compressor parameters design values are listed in table 3.1 and a sketch of
the two-stage bunch compression system is given in Fig. 3.2.

Even though starting with long bunches allows to consider negligible space
charge forces which would be indeed very strong because of the low initial
energy, it produces however a large RF induced correlation in the energy-
phase plane after acceleration. Because of the very small uncorrelated en-
ergy spread from the RF gun, the effect of the RF curvature results after

1The on-crest operation corresponds to the phase point of lowest emittance and beam

energy spread; the electron bunch is accelerated on the peak of the electric field.
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Figure 3.2: Sketch of the two-stage compression at the VUV-FEL.

Compressor Parameters BC2 BC3

Type Standard S-chicane

Angles [deg] 17.5 3.8

R56 [mm] −170 −49

T566 [mm] 276 75

E [MeV ] 130 440

Final I [A] 320 2500

Table 3.1: Two-stage compressors’ design parameters
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compression in a sharp peak with a long tail in the longitudinal profile. The
major contribution to the FEL process comes from the spike which carries
the required peak current for lasing. In chapter 4 it is shown the agreement
between the simulated bunch profile and the one obtained from experimental
results.

To remove this curvature a superconducting 3rd harmonic cavity is planned
to be installed before the first compressor.

3.2 Diffraction Radiation Target

The diffraction radiation target is placed at 45o with respect to the direction
of propagation of the beam, downstream from bunch compressor BC3, in the
vacuum pipe. It is made of two, 300 nm thick, 46 x 20 mm wide, silicon
foils coated on the beam facing side with 40 nm aluminum, in a frame driven
by a stepper motor2, which allows highly precise movements. The two foils

Figure 3.3: Diffraction radiation target.

(see fig. 3.3) are the jaws of a slit. The slit can be brought into position in
the vacuum chamber with a resolution of 5 µm/step. One of the jaws can
then be moved with respect to the other in the 0 to 10 mm range, with a
resolution of 2.5 µm/step. End-stop safety switches limit the movable jaw
travel.

Everything is computer controlled via DOOCS [26], the DESY accelerator
control system.

2MAE - www.pennmotion.com
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3.3 Experimental Apparatus

Radiation coming from the diffraction radiation target goes through a crys-
talline quartz window (z-cut, clear aperture of 60 mm, 4.8 mm thick) (fig.
3.5) and impinges on a parabolic mirror, whose focal point is in the target
plane. The sketch of the experimental apparatus up to the interferometer
entrance is shown in figure 3.4. The mirror produces a parallel beam which is

Figure 3.4: Sketch of the experimental apparatus.

reflected vertically down towards an aluminum flat mirror, placed at 45o with
respect to the horizontal plane, which reflects radiation horizontally into the
interferometer.

The crystalline quartz window is transparent to millimeter and sub-
millimeter wavelengths allowing an almost flat 80% transmission, except for
a sharp absorption peak at 78 µm, and it is compatible with ultra-high vac-
uum (UHV) atmosphere [28]. In Fig. 3.5 the plot shows the transmission
of crystalline quartz for ordinary rays. In appendix B, the most suitable
materials for millimeter and sub-millimeter applications are reported.

Both the flat and the parabolic mirrors have polished aluminum surfaces,
whose roughness is less than 1/10 of the wavelength, resulting in a very good
reflectivity and negligible absorption losses. The parabolic mirrors mounted
on the experimental apparatus are 90o off-axis3 mirrors whose effective focal
length (200 mm) is twice the focal length of the full paraboloid. All the
electromagnetic waves with frequency lower than the plasma frequency of the
metal, for Al ωp = 3.551015 Hz [27], are almost totally reflected at the metal

3The optical and mechanical axis do not coincide, resulting in a reduction of losses and

chromatic aberrations.
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Figure 3.5: Transmission curve for ordinary rays of crystalline quartz.

surface. Moreover, the parabolic mirror minimizes chromatic aberrations for
a point-like source.

3.3.1 Martin-Puplett Interferometer

The interferometer is a Martin-Puplett type [29], the polarizing version of the
Michelson one, where the Michelson beam splitter is replaced by a polarizer
which splits the polarizations and plane mirrors by roof mirrors. A simplified
sketch of a Martin-Puplett interferometer is shown in Fig. 3.6. A theoretical
treatment is given in appendix D.

The radiation, coming from the plane mirror, enters the first polarizer (P)
whose wires, in our case, are horizontal to let vertical polarization through.
The vertically polarized transmitted radiation first reaches the beam splitter
(BS), placed at 45o, whose wires are at 45o to the horizontal plane when
viewed along the beam input axis. The BS splits the input signal into two
equal, orthogonally polarized components, one being reflected towards the
stationary roof mirror and the other being transmitted to the moveable one,
whose maximum travel distance is 50 mm with a minimum step width of
2.5 µm. Radiation coming back from both arms to the beam splitter re-
combines and is focused onto the Golay cell detectors by a second parabolic
mirror via the analyzing grid (A), located between the mirror and the de-
tectors, which transmits the component orthogonal to the wires to detector
number 1 and reflects the component parallel to the wires to detector number
2.
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Figure 3.6: Sketch of a Martin-Puplett interferometer.

A quantitative approach to Fourier transform spectroscopy is given in
appendix D.

Polarizers

At millimeter wavelengths, polarizers can be built as planar system of metal-
lic wires equally spaced. Any electric field incident on such a system can be
considered as composed of two orthogonally polarized components, one with
its electric vector parallel to the wires and the other orthogonal to them.

The field parallel to the wires induces a current along each wire, whose
resulting distribution is equivalent to the one induced on the surface of a
metallic flat mirror. The parallel component of the electric field is there-
fore reflected, while the orthogonal component, which does not induce any
significant amount of current along them, is almost completely transmitted.

For an ideal beam splitter, the reflectivity and transmittivity coefficients
does not depend on the frequency and no absorption losses occur so that

|r|2 + |t|2 = 1 (3.2)

In the case of real beam splitter, the reflectivity and transmittivity will de-
pend on the wavelength and the dependence is known. If the wire diameter
d and the spacing s between wires are small compared to the wavelength of
the incident radiation, the grid power reflectivity for the parallel and normal
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electric field components is given by Eq. 3.3 [30],

|rp|2 =
[
1 +

(2s

λ
ln

s

πd

)2]−1

(3.3)

|rn|2 =
π4d4

(2λs)2[1 + π4d4

(2λs)2
]

The 90 mm wire grids are wound from 10 µm diameter gold-plated Tungsten
wire with 30 µm spacing.

Even though reflectivity is wavelength dependent, it is straightforward to
verify, as shown in Fig. 3.7 that such beam splitters can be considered almost
ideal over a wide millimeter wavelength range.
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Figure 3.7: Transmission and reflection components of the beam splitter.

Roof Mirrors

A roof mirror consist of two plane metal reflectors in contact along one edge,
which defines the roof line, at an angle of 90o. A sketch of a roof mirror is
shown in Fig. 3.8. It has the property of altering the polarization state of an
incident field upon reflection as illustrated in the figure.

A plane normally polarized radiation, with its electric vector aligned at an
angle θ to the roof line, impacts one of the mirror surfaces. After reflection
from both surfaces the outgoing radiation plane of polarization is rotated
through an angle 2θ, so that the electric vector angle to the roof line is now
−θ. Since the BS wires are oriented at 45o with respect to the vertical plane,
a 45o input polarization parallel to the wires is reflected towards the roof
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Figure 3.8: Sketch of roof mirrors working principle

mirror and reflected back to the BS so that the ~E field component is now
orthogonal to the BS wires4.

3.3.2 Comparison with a Michelson Interferometer

Compared to a Michelson interferometer, the Martin-Puplett has the advan-
tage of an almost perfect beam splitter, since the reflectivity and transmit-
tivity coefficients depend on wires geometric factors and not on the material
used. Suitable intensity beam splitter for the far infrared radiation do not
provide indeed equal reflectance and transmittance for all frequencies and in-
terference effects due to the thickness of the splitter may occur, resulting in
a reflected/transmitted intensity which is a complicate function of frequency.

Furthermore, on average half the power from the source is reflected back
to it with a Michelson device while, in principle, no intensity is lost in a
Martin-Puplett interferometer, being the initial intensity equal to the sum of
the intensities from both detectors.

Finally, the difference signal can be normalized to the sum of the signals
from both detectors, one detecting the horizontal polarization, Vh(x), while
the other the vertical one, Vv(x), yielding an interference pattern, δ(x), which
is independent on current density fluctuations in the electron beam as stated

4Wire grids and mirrors are provided by DESY.
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by Eq. 3.4

δ(x) =
Vh(x)− Vv(x)

Vh(x) + Vv(x)
(3.4)

3.3.3 Simulations

Two codes, ZEMAX5 and THz Transport6, might be used to provide a first
understanding of the interferometer response.

In the previous chapter, we focused our attention on the contribution
of the coherent part of the radiation spectrum, Itot(ω), to the longitudinal
bunch size through the bunch form factor, f(ω), as stated in equation 3.5

Itot(ω) = Isp(ω)[N + N(N − 1)|f(ω)|2] (3.5)

N being the number of electrons per bunch and Isp(ω) the single-particle
spectrum. The measured spectrum, Imeas(ω), is then proportional to Itot(ω)
through the transfer function T (ω) which depends on windows, grids, mirrors,
detectors. T (ω) can be obtained either through calibration with a known
source (as done for the detector transfer function) or calculating it with the
above codes.

Both codes use scalar Fresnel diffraction theory. The THz Transport
has been here preferred because it is freeware and much more user-friendly.
However, studies [31] show the consistency of results from both codes.

THz Program

THz Transport is a Mathematica code which calculates the source function
on grids, free propagates the radiation through each component up to the
last surface, in the present case given by the detector window, and calculates
the output intensity.

It uses the approximation of circular target. The approximation plays a
crucial role mostly at low frequencies where the transverse extension of the
field, being of the order of γλ, is comparable to the target size.

Figure 3.9 shows the transfer function of the Martin-Puplett interferom-
eter for a diffraction radiation source with 5 mm slit aperture and 380 MeV
electron beam energy.

The simulations have a 10% error due to the uncertainty in the numerical
integration.

5Commercially available (www.zemax.com).
6Written by Bernhard Schmidt (www.desy.de/schmidtb/THzTransport).
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Figure 3.9: VUV-FEL interferometer transfer function simulated with THz-

Transport Code. Wire grids are treated as apertures. Eebeam = 380 MeV ,

slit aperture 5 mm.

3.3.4 Alignment of the Interferometer

Before installing the interferometer in the tunnel, a first and accurate align-
ment has been done in the THz Laboratory at DESY.

Mylar foils have been mounted both on the beam splitter and on the
analyzer, paying attention to keep the same plane of the wires. This pro-
cedure has been useful to align the interferometer components with respect
to each other and fix their positions on the optical table. In this way the
Martin-Puplett interferometer is used as a Michelson one.

A 5 mW He-Ne laser has been used both with an expander to make a
parallel beam with a 30 mm diameter spot and without it to perfectly align
the roof mirrors. The laser was sent through a pinhole, to stop back scattered
radiation onto the moveable roof mirror and aligned in such a way that the
spot is exactly on the roof line. A ”round trip” ensured that incoming and
reflected beam were superimposed. Both the roof and the parabolic mirrors
are equipped with micrometric screws to finely adjust position and angle.

In the tunnel the interferometer is mounted on a purposely designed and
built alignment table, providing vertical and horizontal tilt. The entire sys-
tem was aligned with respect to the beamline and to the ground first with
an alignment laser propagating through the beampipe with the diffraction
radiator inserted and closed, then with a He-Ne laser placed on the vacuum
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window opposite the z-cut quartz window and the radiator extracted.

3.4 Detectors

In this section a brief introduction on the thermal detector characteristics
is reported, paying more attention on two detectors usually used to detect
far-infrared radiation, the Golay cell and the pyroelectric detectors, the for-
mer being chosen for our measurements for reasons discussed in the next
paragraph.

One of the main issues in the characterization of the electron bunch lon-
gitudinal density profile is the reconstruction of its shape affected by the low
frequency cut-off due to the vacuum pipe, the interferometer components and
the detector acceptance. For this reason knowledge of the frequency response
of the detector, in particular in the millimeter and sub-millimeter range [35],
is essential in order to correct the results and extrapolate a bunch shape as
close as possible to the real one.

Thermal detectors respond to temperature rise due to the absorption
of radiant energy. The main parameter is the detector sensitivity or Noise
Equivalent Power (NEP), which is the rms value of the incident chopped
power necessary to produce a Signal-to-Noise ratio of 1. Since the rms elec-
trical noise is calculated per unit square root bandwidth, the units for NEP
are W√

Hz
.

3.4.1 Golay Cell Detector

Golay cells were developed during World War II by M.J.E. Golay in order to
detect aircraft by measuring their radiated heat. Their development came to
an end when radars became available [33].

A Golay cell detector is a thermo-acoustic detector consisting of a small
cell filled with a gas, typically Xenon because of its low thermal conductivity,
and a sensitive heat absorbing film7 with low thermal capacity which ensures
a flat response to different frequencies. The frequency dependence is given,
in principle, only by the properties of the window material used.

Figure 3.10 shows a sketch of the inner components of the Golay cell
detector and the optics system associated with it.

7In our case, it is produced by aluminizing an extra-thin (0.2 µm thickness) cellulose

layer.
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(a) The Golay cell

(b) The optics system

Figure 3.10: Sketch of a Golay cell detector. 1. Polished metal input cone to

increase the radiation angular acceptance; 2. Input window; 3. Absorbing

film; 4. Signal and compensation channel; 5. Sensitive mirror membrane; 6.

Vacuum chamber; 7. Objective; 8. Gas chamber; 9. Grid; 10. Double-lens

system; 11. LED; 12. Mirror; 13. Grid; 14. Photocell.
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Radiation, mostly in the IR region, goes through the window and is ab-
sorbed by the film warming it and the contained gas up. The gas therefore
expands and the resulting pressure change modifies the shape of the flexible
aluminized membrane (5) at the back of the cell, which acts as a mirror. In
order to compensate for changes in room temperature there is a small ”leak”
to a reservoir from the gas cell (4). To convert the membrane movement into
an electrical signal, a light emitting diode (LED) (11) illuminates, through
a double-lens system (10), the back of the flexible mirror. A grid (9) and
a lens are placed in front of the flexible mirror in such a position that, in
absence of any movement of the mirror, an image of one part of the grid is
superimposed on another part of the grid. The reflected light then repasses
through the double-lens system and is focused onto a photocell (14).

In principle, due to the thin absorbing film in the cell, the optical response
is flat over a wide spectral range (from 1 µm up to several mm), the limiting
feature being the window aperture and the material chosen. In our case,
the diamond window mounted on the detector is transparent for almost all
wavelengths, but the flatness behavior has to be verified (details in next
section and in Appendix C).

The Golay cells used in the experiment are type OAD-7 (Optical Acoustic
Device) from QMC8 Instruments; their characteristics are listed in table 3.2.
Because of its high sensitivity and wide bandwidth in the millimeter range,

Window Material Diamond

Free Aperture Diameter 6 mm

Mechanical Diameter 8 mm

Window Thickness 0.4 to 0.5 mm

Wedging no (plane/plane faces)

Response BW 0− 35 Hz

NEP @ 20 Hz 10−10 W√
Hz

Table 3.2: Golay cell detector characteristics

the Golay cell detector has been preferred to a pyroelectric one. In terms
of the Noise Equivalent Power or NEP it is of the order of 10−10 W√

Hz
. The

8www.terahertz.co.uk
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main drawback is the slow temporal response (decay time of the order of tens
of ms), the limit to the speed of detection being determined by the relative
values of the thermal capacity and thermal conductivity. However in the
present case it is not a critical issue since the highest macropulse repetition
rate is 5 Hz. To obtain the best performance from a Golay cell detector, it
is recommended to shield it from abrupt temperature variations and to limit
the amount of power which may destroy the membrane. The removal of any
kind of vibrations is also advisable, in particular vacuum pumps might cause
problems.

A first check of the Golay cell characteristic has been done in the lab-
oratory by using a blackbody radiation source. The detector response was
checked at the TTF working frequency, 2 Hz or 5 Hz (Fig. 3.11).

Figure 3.11: Golay cell detector response as function of the chopping fre-

quency.

Even though the maximum signal is detected at 7 Hz, the best chopping
frequency value, for which the NEP has a minimum, is found to be 20 Hz.

Before starting the measurement, the detector has been tested at TOSY-
LAB9 with a synchrotron radiation source. Results are shown in Fig. 3.12.

The oscilloscope has been set in AC coupling with an output impedance
of 1 MΩ, since in DC coupling a large offset (roughly −10 V ) is shown for
measurement at high impedance.

In these measurements we could not operate at low impedance (50 Ω)
because the internal circuit of the detector is such that it cannot feed device

9Terahertz and Optical Synchrotron Radiation Laboratory - DESY Hamburg.
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(a) 50 ms/div (b) 200 µs/div

Figure 3.12: Signal from the Golay cell detector with synchrotron radiation

source.

with impedance lower than 2 kΩ. This is also the reason why we could not
see the signal on the ADC, since its input impedance is 1 kΩ.

For further measurements, a circuit to adapt impedance and let the signal
be directly read by a fast ADC has been designed and built.

Fig. 3.12b, which shows details of the pulses in figure 3.12a, shows damped
oscillations around the peak with period of roughly 400 µs believed to be due
to vibrations of the cell absorbing film when a signal is incident on it, giving
rise to a resonance effect.

3.4.2 Pyroelectric Detector

Pyroelectric detectors, being thermal detectors, produce a signal in response
to a change in their temperature. Below a temperature Tc, known as Curie
point, ferroelectric materials (Triglycine sulfate, Lithium, Tantalate) exhibit
a large spontaneous electrical polarization. If the temperature is altered by
an incident radiation, the polarization changes and, if electrodes are placed
on opposite faces of a thin dielectric, forming a capacitor (Fig. 3.13), the
change in polarization can be observed as an electrical signal.

The process is independent on the wavelength of the incident radiation,
resulting in a flat response over a wide spectral range. The limiting feature
is either the sensor size or the window material used in the manufacture of
its housing. By using a suitable material it is possible to detect radiation of
different frequencies up to 1 mm. The main advantage is the fast temporal
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Figure 3.13: Sketch of the pyroelectric detector.

response, being the faster the lower is the resistance, a feature which is
evident in the test at TOSYLAB with synchrotron radiation (same conditions
of Golay cell operation) and depicted in Fig. 3.14.

(a) 1 ms/div (b) 100 µs/div

Figure 3.14: Signal from the Molectron P1-45 pyroelectric detector with

synchrotron radiation source at TOSYLAB.

Thanks to the fast temporal response, pyro-detectors are used as bunch
compressor monitors both at DBC2 and DBC3 to give a rough estimation
for the maximum compression.

3.5 Golay Cell Calibration

The calibration has been performed using three different technique depending
on the explored spectral regions:
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• Millimeter wave generator in the 75 - 110 GHz (equivalent to 4 -
2.7 mm) bandwidth

• Hot-Cold method for four selected wavelengths: 2.1 mm, 1.4 mm,
1.1 mm, 850 µm

• FEL radiation source in the range 100 - 160 µm

the goal being the definition of the detector responsivity as

R[V/W ] =
Measured V oltage Response

Incident Power
(3.6)

as function of the frequency.

3.5.1 Millimeter Wave Generator

A scalar network analyzer (SNA), which directly drives a millimeter-wave
source module to 110 GHz in waveguide, has been used to produce monochro-
matic, linearly polarized radiation10. The waveguides are built such that
only the fundamental mode TE10 can propagate within the frequency band
75 - 110 GHz. A chopper to modulate the CW signal and a horn antenna
to collect radiation on the second waveguide are inserted between the op-
tical elements resulting in the interruption of the transport line as shown
in Fig. 3.15, causing the emitted power to be strongly dependent on the
frequency as shown in Fig. 3.16.

Figure 3.15: Experimental setup for the Golay cell calibration using coupled

oscillators.

Figure 3.16 clearly shows the effect of the horn antenna, which behaves
as a cavity, on the source power spectrum: the better the alignment of the

10Collaboration with the University of Milano-Bicocca, Department of Physics.

47



optical components the worst the response is, being the oscillations wider.
They were attenuated by introducing a misalignment between the horn and
the optical axis (blue curve) and measurements were performed with this
configuration.

Figure 3.16: Source power spectrum for open (aligned and misaligned) and

close channel.

To reduce power losses and to ensure an almost perfect RF contact, thus
preventing reflected power and resonance effects, a conical tapered waveguide
with aperture 30o has been studied (HFSS11 code) and manufactured from an
anticorodal12 rod by electroerosion to have at one end a standard flange with
rectangular aperture (x = 2.54 mm; y = 1.27 mm) and a custom circular
flange with radius of 3 mm to match the detector window at the other end.

An initial power of 0 dBm has been attenuated and chopped at 10 Hz and
fed to a lock-in amplifier to eliminate the background noise. The frequency
has been swept over 75 - 110 GHz band in 0.1 GHz steps. The responsivity,
defined as the ratio between the measured voltage response and the incident
power, is shown in Fig. 3.17.

On average, the responsivity has a reasonable almost flat behaviour. The
peak amplitude is strongly dependent on the aperture between the waveg-
uides necessary for chopping and are not a detector characteristic. Finally,
the order of magnitude of the measured cell responsivity is in good agreement
with the manufacturer specifications.

11HFSS is a 3D electromagnetic fields simulation tool.
12Aluminum alloy.
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Figure 3.17: Golay cell detector responsivity.

More details on the calibration of tapered waveguides, network analyzer
and attenuator can be found in Appendix C.

3.5.2 Hot-Cold Method

In microwave radiometry, calibration is commonly performed comparing liq-
uid nitrogen cooled to room temperature black body-like sources.

The method, called hot-cold, gives a broad band calibration. In order to
get a point-to-point calibration band-pass filters have to be inserted to select
a specific wavelength. Finally, to reduce the power reaching the detector
and to cut visible and near-infrared (NIR) contribution, additional low-pass
filters have to be used.

If we assume a blackbody having the physical temperature T , the radia-
tion intensity, BB(ν, T ), can be calculated according to Planck’s law, Eq. 3.7:

BB(ν, T ) =
2hν3

c2

1

e
hν
kT − 1

(3.7)

where k is the Boltzmann constant, c the speed of light, ν the radiated
frequency, h the Planck’s constant.

The power emitted by a blackbody source is given by integrating over the
whole frequency spectrum the following expression

P (ν, T )dν = AΩBB(ν, T )dν = AΩ
2hν3

c2

1

e
hν
kT − 1

dν (3.8)
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By taking into account the solid angle subtended by the detector (Fig. 3.18),
which can be estimated from Eq. 3.9

Figure 3.18: Experimental geometry.

Ω(L) =

∫ 2π

0

∫ ϑ0(L)

0

RA(ϑ, φ) sin ϑ cos ϑ, dϑdφ (3.9)

and the emission spectrum (3.7), the power ∆P on the detector can be
calculated by means of Eq. 3.10:

∆P = AΩ

∫
∆BB(∆T, ν)τ(ν)dν (3.10)

where ∆BB(∆T, ν) = BB(Thot, ν)−BB(Tcold, ν) is the brightness difference
between the two sources, A is the effective emitting source area and AΩ the
radiation throughput that is a measure of radiating energy transported by
the beam; τ(ν) is the transfer function which takes into account blockers, to
stop the visible and NIR light, and mesh filters, to select the wavelength of
interest. L is the distance between the detector and the source and RA(ϑ, φ)
the measured detector angular response (Fig. 3.19) which, assuming cylin-
drical symmetry, depends only on ϑ.

Infrared detectors are usually only sensitive to variations of illumination,
therefore a chopping setup is used.

The hot-cold calibration method considered13 uses two blackbody sources
made of ECCOSORB14, the hot one at room temperature (300 K) directly

13Collaboration with the University of Rome ”La Sapienza” - Physics Dept.
14Sheet of silicon rubber impregnated with iron compounds whose magnetic perme-

ability, µ is close to its dielectric constant ε, so that its impedance tends to Z =
√

µ
ε = 377 Ω, i.e. the vacuum impedance (Emerson & Cuming Microwave Products -

www.eccosorb.com)
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Figure 3.19: Golay cell detector measured angular acceptance.

attached to the chopper wheel, and the cold one floating in liquid Nitrogen
at 77 K [36], the difference signal being measured.

Isolating part of the spectrum using proper band-pass filters15 with center
wavelengths of 850 µm, 1.1 mm, 1.4 mm, 2.1 mm (between 10 to 15%
of tolerance) allows a responsivity measurement at different wavelengths,
but at temperatures for which there is sufficient intensity in the far-infrared
range of interest, the spectrum rises steeply towards short wavelengths as
1/λ4, requiring efficient blocking. Since even a small leakage at NIR and
visible wavelengths would dominate any signal measured, low-pass filters,
like Yoshinaga16 (ν̂cutoff = 55 cm−1) and Fluorogold17 (ν̂cutoff = 30 cm−1,
3 mm thick) have been inserted. Theoretical transmission curves for all these
filters are shown in Fig. 3.20, their calibration being missing.

The detector is positioned at a distance from the source of 3 cm and the
output voltage ∆S recorded (Fig. 3.21) for each wavelength selected by the
free-standing mesh filters. With careful consideration of the geometry even
an absolute value of the detector responsivity as function of frequency can
be calculated from Eq. 3.6.

The large signal at 143 GHz (red dots and green triangles), corresponding
to the 2.1 mm mesh filter, is due to the wide mesh of the filter for long
wavelengths, resulting in a greater contribution of leaking short wavelengths.
With more blockers the leakage is reduced and complete attenuation of the
visible light contribution (blue squares) is achieved if a fluorogold filter is
also added, resulting in a flat frequency response within the errors.

15Free-standing mesh filters manufactured by IKI in Moskow, cf. [37].
16It is made from polyethylene sheets loaded with varieties of powdered crystals.
17It is a form of glass-filled Teflon.
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Figure 3.20: Transmission curves of the band-pass and low-pass filters used.

Figure 3.21: Detector output voltage with different blockers.
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High-Resolution Diamond Transmission

From literature [45], we know that a non-wedged diamond window of thick-
ness d = 0.46 mm and refractive index n = 2.4 can produce interference
fringes with period ν̂ = 1

2nd
= 5 cm−1, as shown in figure 3.22, and visible in

the high-resolution transmission function.

Figure 3.22: Transmittivity and reflectivity for a plane-plane faces diamond

window of thickness d = 0.46 mm and refractive index n = 2.4.

To check the presence or not of these structures on the Golay diamond
window, a high-resolution measurement has been performed using a Mercury
vapor lamp18 and a lamellar grating interferometer [38], [39], whose efficiency
is well-known.

The radiation from vapor lamp, operating at 3 atm, goes through the
lamellar grating interferometer. Interference effects occur if the radiation,
coming from the source, is reflected by two sets of mirror blades which can
be shifted one with respect to the other to vary the distance h, responsible
for the path difference in the beam proportional to 2h. The spacing between

18In the visible-UV range it is characterized by an arc emission due to the electric

discharge through the Hg vapor, while in the FIR/mm-waves it is similar to a blackbody

emission, due to the inner quartz bulb, at a temperature between 3000 K and 3500 K.

The total spectrum is then given by the overlap of both types of emission and for this

reason it is not well-known.
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the inner and outer face can be varied by means of a stepper motor; the step
width between both faces and the acquisition time can be fixed in advance.
The radiation, modulated by a chopper at a frequency of 12.5 Hz locked
to a lock-in amplifier, is then directed to the detector window. The output
signal is then acquired with a LabView program and analyzed by means of
Fourier spectroscopy by extracting the transmission spectrum of the detector
window from the interferograms.

Figure 3.23 shows a scheme of the lamellar grating interferometer and its
optical configuration.

Figure 3.23: Sketch of a lamellar grating interferometer.

The scanned frequency range is 0 − 31 cm−1, which is equivalent to
the wavelength range from infinite up to 300 µm; the spectral resolution
is ∆ν̂ = 1

dmax
= 0.5 cm−1, dmax being the maximum travel of the mov-

ing blade. The mechanic interferometer step is 80 µm over 20.48 mm total
length. The zero-path-difference (ZPD), corresponding to the position where
mirrors are coplanar and resulting in a maximum signal, has been calibrated
to be roughly at the position of half the total number of steps. This measure-
ment does not provide an absolute calibration, at this purpose two spectra
are needed, indeed: one spectrum recorded with the filter, the second one
without any filter. However, in the present case, the filter is given by the
Golay cell detector window, thus only a relative calibration can be obtained.
Again blocking filters are necessary to cut the non-negligible UV and visi-
ble contribution coming from the arc emission of the Mercury vapor lamp;
at this purpose, a Yoshinaga blocker has been used. Since the signal is
extremely weak a second filter, a hot-pressed polyethylene (PE) filter with
15 cm−1 cut-off, was necessary to decrease the frequency band and increase
the signal-to-noise ratio.

Ten interferograms have been acquired and fast Fourier transformed by
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means of an IDL 5.4 program to determine the high-resolution transmittance
for the Golay cell diamond window. In figure 3.24 the average spectrum is
shown as function of the wavenumber. The low-frequency cut-off depends
on the lamellar grating interferometer geometry, while the high-frequency
cut-off is given by the PE filter.

Figure 3.24: High-resolution diamond spectrum.

No interference fringes with the expected period of roughly 150 GHz
are evident in the high-resolution spectrum. Thus, the diamond window
does not give rise to interference effects due to the parallel flat surfaces.
However, the diamond spectrum presents some structures with sharp peaks
at 196 GHz, 241 GHz, 286 GHz and 336 GHz, with 45 GHz spacing,
except for the last one spaced of 50 GHz. These structures are not due to
the Yoshinaga filter used since the characteristic ringing in the low-frequency
region of the transmission function (Fig. 3.20) does not show the same
spacing, but they might be due to the polyethylene hot-pressed filter whose
transmission function is unknown.

The fact that the spectral resolution of the Martin-Puplett interferometer,
used in the bunch length measurement, is greater than the spacing between
the peaks in the diamond spectrum allows to disregard these structures by
fitting the curve with a flat function in the range 200− 350 GHz.

55



3.5.3 FEL Radiation Source

A quasi-monochromatic radiation source with known intensity, provided by
the far-infrared free-electron laser FELIX19, has been used to look at the
Golay cell detector response in the range 100 160 µm.

The FEL intensity was monitored with a reference joulemeter, whose cali-
bration constant, 573 V/J , is assumed to be valid over the full measurement,
and regulated to a suitable value by means of attenuators between 0 and
38 dB. Frequency dependencies of both attenuators and reference detector
cannot be separated in the results.

The setup is shown in Fig. 3.25.

Figure 3.25: FELIX experimental setup.

At 135 µm and with 3 dB attenuation a pulse energy of about 9 µJ can
be estimated from the joulemeter measurement. With 30 dB attenuation,
the energy measured with the joulemeter was roughly 18 nJ and the detector
signal amplitude on the oscilloscope 30 mV . A sensitivity of 1.7 MV/J then
follows.

The signal was observed on the oscilloscope. Scans over the wavelengths
were made via a LabView program and GPIB readout of the scope. Fig. 3.26
shows two scans made under normal pressure in air. The Golay cell detector
sensitivity shows a flat behavior over almost the entire range except for a
sharp peak at 101 µm in the measurement labelled with number 2, which
might be due to instability of the machine, a second measurement, labelled
with number 1, performed immediately after this one does not show indeed
any particular structure.

19FOM Rijnhuizen Institute, Netherlands
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Figure 3.26: Two measurements of the Golay cell detector sensitivity re-

peated under the same machine conditions.

3.6 Calibration Results

The detector characterization, performed in the three different regions of the
spectrum, from 100 µm to 4 mm, do not show any significant structures in
the detector response as expected from the Golay cell specifications which
though are given up to 1 mm and based on the low-resolution (intereference
free) diamond transmission curve.

In all the measurements, the experimental geometry and the optics used
to reduce intensity, block high-frequencies and collect radiation contribute
to the detector response more than the detector itself, resulting in a re-
sponsivity curve which is not flat in frequency, the frequency dependence
being determined by the experimental setup. In most cases, for example in
the calibration described in section 3.5.1, it is not possible to correct for this
contribution since the effect caused by the aperture in the waveguides section
on the power distribution can be neither estimated nor removed. However
since the described frequency-dependent behavior comes from the experimen-
tal setup, it is acceptable to fit the results with a flat, with respect to the
frequency, function. The total Golay cell detector transfer function, shown
in Fig. 3.27, has therefore been obtained by interpolating the transfer func-
tion coming from each calibration method, the most confident ones being
those using hot-cold and FEL radiation due to the much easier experimental
geometry.

The high-pass filter behavior is shown, the intermediate region (0.5 -
2 THz) being however not covered by any calibration method. This first-
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Figure 3.27: Golay cell transfer function in the range 100 µm - 4 mm.

time Golay cell characterization extends however to the long wavelength re-
gion of the spectrum, providing a good understanding of how it works and
giving a sufficient response for what concerns the bunch length measurement
correction.
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Chapter 4

The Bunch Length

Characterization

As already stressed in chapter 2, a measurement of the coherent diffraction
radiation pulse length is also a measurement of the longitudinal size σb of the
electron bunch if, in case of off-axis observation, the transverse beam size ρ
and the observation angle θ satisfy condition 4.1

2πρ tan θ

3.83
¿ σb (4.1)

a correction being needed otherwise. We assume the condition always valid.
Since picosecond electron bunches radiate more coherent millimeter and

sub-millimeter radiation than longer bunches, the relative electron bunch
length can be minimized by simply adjusting the beam injection parameters
while monitoring the intensity of the coherent diffraction radiation detected,
used as fast monitor to check if the compression has taken place. The analysis
of the coherent diffraction radiation spectrum, based on Fourier transform
spectroscopy, will give an accurate, except for a phase factor, characterization
of the pulse shape. The Kramers-Kronig relations will be therefore needed
to cancel the ambiguity of retrieving the bunch profile from the measured
CDR spectrum.

Spectral techniques avoid the synchronization difficulty typical of time
domain methods, but they suffer similar losses of low-frequency components,
due to diffraction, finite size of the radiator and reduced acceptance and
sensitivity of detectors at long wavelengths. Furthermore, only certain classes
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of bunch shapes can be accurately reconstructed from their power spectra.
Measurements have been performed at the TTF VUV-FEL linac down-

stream from the second bunch compressor (BC3) varying the electron energy
and energy spread in the compressors by changing the accelerating sections
RF phase. Both bunch compressors (BC2 and BC3) have been used in on-
crest and off-crest operation. A few measurements have been done during
SASE FEL operation (see section 4.2.4) to demonstrate the effective non-
destructive nature of diffraction radiation with different slit apertures.

The CDR signal detected by the Golay cell detectors is read out by an
analog-digital converter (ADC), triggered by the VUV-FEL macropulse trig-
ger with a frequency of typically 2−5 Hz. Interferograms have been acquired
by means of a MatLab scan tool named MIST1, which allows also the accu-
rate evaluation of the autocorrelation spectrum by fast Fourier transforming
(FFT) the normalized (to the total intensity) difference interferogram and
the reconstruction of the bunch profile, corrected by quartz window, inter-
ferometer and detector transfer functions.

4.1 Interferogram Acquisition

The interferogram is obtained by recording a certain number, depending on
the beam stability, of signal amplitudes from both Golay cells detecting the
horizontal, Vh(x), and vertical, Vv(x), polarization as a function of the path
difference, x, in the two arms. The single data point of the raw interferogram
(Fig. 4.1) is given by the mean value of these measurements, its statistical
error is the standard deviation.

Figure 4.1, showing the raw interferogram from both the horizontal and
vertical polarization detectors, allows a first adjustment of the interferome-
ter misalignment, denounced by a non-symmetric interferogram, and of the
response of the detectors, whose sensitivities are slightly different due to a
different readout electronics (built-in pre-amplifier and impedance adaptor
circuits). Non-symmetric interferograms could also occur because of an im-
proper beam optics, resulting in the beam to be intercepted by the diffraction
radiation target, as Fig. 4.3 shows.

This effect largely affects the spectra, resulting in a double peak for the
curves at +3 deg and +6 deg as shown in Fig. 4.2.

The measured voltage is therefore corrected to allow the normalization
to the total intensity.

1Martin-Puplett Interferometer Scan Tool written by Lars Fröhlich - DESY.
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Figure 4.1: Raw interferogram from horizontal and vertical polarization de-

tector.

Figure 4.2: Normalized difference interferogram in case the beam is inter-

cepted by the target.
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Figure 4.3: Coherent diffraction radiation spectra measured for different ac-

celerating phases. The curve labelled as +3 deg is obtained by Fourier trans-

forming the interferogram of Fig. 4.2.

Before starting each set of measurements, the signal from the toroids
(Fig. 4.4) is used to ensure that transport of the beam through the linac is
optimized and that the beam is not intercepted by our target.

Figure 4.4: Toroids reading.

After that, a phase scan of the accelerating module of interest for the
measurement is made recording the signal of both bunch compression moni-
tors, one placed downstream from BC2 and the other downstream from BC3,
and the Golay cell detector mounted on the interferometer at BC3 in order
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to check the RF phase value for which the compression is maximum (Fig.
4.5).

(a) BC2 (b) BC3

Figure 4.5: Accelerating module phase scan.

Several tests have been performed to optimize the detector response with
different sets of beam parameters.

In the measurements discussed in the following section, 0.3 nC and 1
bunch have been used because of the peculiar Golay cell response. Either
for high charge or high peak current beam, indeed, the characteristic Golay
cell damping oscillations (of the order of µs), already discussed in chapter
3, saturate giving rise to a triangular shape signal as shown in figure 4.6,
where the maximum signal amplitude is not well distinguished anymore. As
a consequence, due to the slow temporal response of the Golay cell detector,
the time interval scale of the fast ADC used is comparable with the period
of the detector damping oscillations, resulting in a wrong sampling of the
ADC.

To operate either at higher current or higher charge, the ADC has to be
changed and its temporal interval scale set to match with the Golay time
response scale.

4.1.1 Interferogram Fitting Function

Since the full width at half maximum (FWHM) of the autocorrelation func-
tion is directly proportional to the FWHM of the pulse2, a rough analysis can

2For a Gaussian shape beam the FWHM is 1/
√

2π times the FWHM of its autocorre-

lation and for a rectangular pulse is exactly the FWHM of its autocorrelation.
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Figure 4.6: Saturation of the characteristic Golay cell detector ringing around

the maximum signal. 6 bunches, 1 nC per bunch.

be done by assuming the pulse shape is known. Fitting the normalized differ-
ence interferogram, it is possible to find the rms beam pulse length and the
cut-off frequency of the interferometer [41]. Before proceeding in the research
of the best interferogram fitting function for both Gaussian and real TTF
bunch profile, it is worthwhile to note the high-pass filter behavior of the in-
terferometer due to diffractive losses and physical apertures in the detecting
system: an analytical filter function, which well describes the interferometer
effect on the spectrum, is of the form

g(ω) = 1− exp(−ξ2ω2) (4.2)

where ξ is the intereferometer cut-off parameter. The high-pass filter behav-
ior is justified also by the simulation shown in chapter 3.

In the following subsections, we will derive the interferogram fitting func-
tion first assuming a Gaussian electron beam profile, then considering the
true TTF beam pulse whose shape has a sharp asymmetric peak with a long
tail.
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Gaussian Bunch Shape

The easiest to treat and most widely used assumption made to approximate
the true bunch shape is that it is a Gaussian with a charge density distribution
given by

ρ(t) =
1√
2πσt

exp
(−t2

2σ2
t

)
(4.3)

In the frequency domain, calling g(ω) the high-pass filter function of the
interferometer, the autocorrelation of the signal is given by the product of
the spectral beam density, ρ(ω) and g(ω) as

ρf (ω) = ρ(ω)g(ω) (4.4)

and the spectrum of the signal is

Ifit(ω) ∝ |ρf (ω)|2 = |ρ(ω)|2(1− 2e−ξ2ω2

+ e−2ξ2ω2

) (4.5)

The signal in the time domain is therefore obtained by inverse Fourier trans-
forming Eq. 4.5

δ(τ) ∝
[
e−

(τ−τ0)2

4σ2 − 2σ√
σ2 + ξ2

e
− (τ−τ0)2

4(σ2+ξ2) +
σ√

σ2 + 2ξ2
e
− (τ−τ0)2

4(σ2+2ξ2)

]
(4.6)

For a Gaussian beam the rms beam pulse length, σ, and the cut-off frequency
of the interferometer, ξ−1, are found simply fitting Eq. 4.6, called from now
on ”3-Gaussian” function, to the time domain interferogram.

Results of this ”3-Gaussian” fit are compared in section 4.2.1 to those of a
standard Gaussian fit. The interferometer frequency cut-off, ξ−1 ' 150 GHz,
obtained by the ”3-Gaussian” fit is confirmed by both experimental results
and simulations as shown in the measurements section and in chapter 3,
respectively.

True TTF Bunch Shape

From simulations, supported by time domain bunch length measurements
[42], the TTF VUV-FEL compressed bunch profile is predicted to have a
very sharp, asymmetric peak and a long tail as shown in Fig. 4.7, due to the
non-linear energy-phase correlation introduced by the off-crest acceleration
during bunch compression, as already discussed in chapter 3.

Both the high and low frequency cut off, introduced by the frequency
domain technique using DR diagnostics, result in a more complicate recon-
struction of the bunch profile.
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The high frequency cut off, produced by the slit aperture and the z-cut
quartz window transmission, could in principle affect pulses such the true
TTF ones, because the peak, which highly contributes to the FEL lasing,
contains much larger high frequency components than low frequencies. How-
ever, frequency domain techniques introduce a more severe suppression of
low frequencies which correspond to slow variations and are related to the
tail. The loss of information on the tail does not affect the FEL generation.

Figure 4.7: Expected TTF bunch profile.

The function which best fits the true pulse is

ρ(t) = ρ0 + A
[
1− exp

(
− t− t0

q1

)]p

exp
(
− t− t0

q2

)
(4.7)

with t0 such that t1 = t0 + q1[ln(pq2 + q1)− ln(q1)]; s0, A, t0, q1, q2, p being
the fitting free parameters.

The fitting curve for the interferograms, assuming a pulse whose shape is
shown in Fig. 4.7, is then found by Fourier transforming equation 4.7,

ρ̃(ω) =

∫ ∞

−∞
ρ(t) exp(−iωt)dt, (4.8)

convoluted with the high-pass filter function of Eq. 4.2. The resulting power
spectrum is then given by

Ifit(ω) = ρ̃(ω)∗ρ̃(ω)|1− exp(−ξ2ω2)|2 (4.9)
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The interferogram fitting function, shown in Fig. 4.8, is then given by Fourier
anti-transforming equation 4.9

δ(τ) =

∫ ∞

−∞
Ifit(ω) exp(iωτ)dω (4.10)

Figure 4.8: Interferogram fitting function for the true pulse shape.

4.2 Bunch Length Measurements

Several measurements have been performed under different machine condi-
tions.

In this section we want to show the bunch profile dependence on both
accelerating modules phase. For this purpose several scans have been done
varying ACC2-3 phase around the maximum compression value, while ACC1
is tuned on crest.

The spectra have been corrected by the Golay cell detector transfer func-
tion, obtained from calibration, the z-cut quartz window and the interferom-
eter transfer functions, obtained from the simulation with the THz Transport
code as described in chapter 3.

The final bunch profile has been determined by first evaluating the mea-
sured CDR power spectrum by Fourier transforming the autocorrelation func-
tion as described in the previous section. The power spectrum from a bunch

67



of N electrons, defined in chapter 2, allows to derive the bunch form fac-
tor once the single-particle power spectrum is known. Finally, the bunch
profile is determined by anti-transforming the form factor and applying the
Kramers-Kronig method to retrieve the proper phase factor as described in
chapter 2.

4.2.1 Bunch Length Dependence on the ACC2−3 Phase

Four interferograms have been taken by keeping fixed the ACC1 accelerating
phase at the on-crest value (128.61 deg) and varying the ACC2 − 3 phase
around the maximum compression value found with the pyro-detector phase
scan at 12 deg. The energy measured at the exit of the third accelerating
module is 380 MeV . One bunch with 0.3 nC per bunch has been used.

(a) −2 deg (b) Maximum compression phase

(c) +2 deg (d) +6 deg

Figure 4.9: Interferograms for different ACC2−3 accelerating module phases.
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The normalized difference interferogram is plotted in figure 4.9 as a func-
tion of the path difference for four values of the ACC2 − 3 accelerating
module phase. For convenience, the phase corresponding to the maximum
compression is arbitrarily set at 0 deg.

Figure 4.9 shows the typical interferogram with the center burst at the
zero path difference where all wavelengths are in phase. The difference be-
tween the baseline and the depth of the side minima, visible in the plots a), b)
and c) of Fig. 4.9, is strictly dependent on the steepness of the electron beam
profile, whose slope is steeper the shorter the bunch. The longer the bunch
the profile gets smoother and closer to a Gaussian distribution, resulting in
the merging of the side minima with the baseline as shown in the plot d).
Fig. 4.10 shows the comparison between the four interferograms.

Figure 4.10: Comparison between interferograms with different accelerating

phases.

Plotting the bunch length (FWHM) as a function of the accelerating
phase (Fig. 4.11a), the curve behavior is in very good agreement with the
results obtained from the phase scan curve (Fig. 4.11b).

The black and red curve in figure 4.11 correspond to a first approximation
bunch length measurement, determined by fitting the interferograms with a
Gaussian and the ”3-Gaussian” function introduced in the previous section.
The agreement between the curves is within 15%. Corrections due to the
detector transfer functions are not taken into account in this first analysis,
since it was performed directly on the normalized difference interferogram.
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(a) Fit results

(b) Pyro-scan at BC3

Figure 4.11: Comparison between the bunch length (black and red points in

plot (a)) and the phase scan curve (blue triangles in the plot (b)). The bunch

length follows very well the phase scan, the maximum registered intensity

corresponding to the shortest bunch length.
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In what follows corrections due to the Golay cell detector transfer func-
tion, the z-cut quartz window transmission and the interferometer acceptance
are taken into account and the measured spectra corrected by the total trans-
fer function shown in Fig. 4.12. The resulting bunch length (FWHM) for
different accelerating phase is plotted in Fig. 4.16: blues squares refer to
the correction given by the quartz window transmission function, red circles
to both quartz transmission and interferometer acceptance and green trian-
gles to the transfer function of the whole apparatus including the Golay cell
detector response.
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Figure 4.12: Total transfer function taking into account the Golay cell de-

tector response and the z-cut quartz window transmission.

Both the measured spectrum and the form factor show clearly the falling
slope is steeper, the longer the bunch, because of the smaller high frequency
content. Furthermore, it is evident that the low frequency part of the spectra
is strongly suppressed by the detector and the interferometer.

Bunch profiles show a steeply rising slope and a long tail. It is evident that
far from compression (blue curve) the profile is wider and more symmetric
and both the falling and the rising slopes less steep. At symmetric phases
(−2 deg and +2 deg), the profiles do not appear significantly different because
we are close to the minimum where the curve can be very well approximated
with a parabola. However, the phase of maximum compression is not a
symmetric point for the accelerating field, thus farther from the minimum,
the symmetry is broken and also symmetric values of the phase are expected
to give different compressions as it is evident from the different slopes in the
RF phase scan.
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Figure 4.13: CDR measured spectra for different values of ACC2-3 RF phase.

Figure 4.14: Bunch form factor for different values of ACC2-3 RF phase.
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An rms bunch length of 0.8 ps is found at the maximum compression
phase.

Figure 4.15: Bunch profile for different values of ACC2-3 RF phase.

The width of the shortest peak, obtained by fitting the profile with the
function introduced in section 4.1.1, is 1.2± 0.1 ps (Fig. 4.17).

Theoretical Evaluation of the Bunch Length

Different particles within the bunch will experience different acceleration de-
pending on the phase of the electric fields they experience as already discussed
in chapter 3.1.

Assuming normal longitudinally distributed particles in the beam, the
bunch energy spread and the longitudinal emittance can be written in terms
of the initial bunch length as

σδ =

√
σδ0 + α2σ2

z,in +
1

2
β2σ4

z,in (4.11)

εz = σz,in

√
σδ0 +

1

2
β2σ4

z,in

with σz,in the initial pulse length, α and β the first and second order energy-
length correlation, respectively, defined by

α = −2πEcav sin φ

E0λRF

(4.12)

β = −4π2Ecav cos φ

E0λ2
RF
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Figure 4.16: Measured bunch lengths (FWHM) for different value of the RF

phase. Different curves refer to successive corrections due to the experimental

apparatus.

Figure 4.17: The bunch profile corresponding to the shortest bunch is fitted

with the function introduced in section 4.1.1.
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Assuming a negligible uncorrelated energy spread, the minimum bunch length
achievable is given by

σz,min =
σ2

z,in√
σ2

z,in +
λ2

RF

2π2 tan2(φ)
(4.13)

Knowing that the phase corresponding to the maximum compression is 20 deg
off crest and σz,in = 2.2 mm, the expected minimum rms bunch length is
0.85 ps. Although the calculation does not take into account the uncorrelated
energy spread from the injector, the result is in good agreement with the
measurement and this should provide us some rough estimates of what to
expect.

4.2.2 Estimate of Errors

In the ideal case of no low and high frequency suppression, the CDR spectrum
is directly proportional to the bunch form factor from which the longitudinal
bunch profile is inferred by means of Fourier analysis. However, the mea-
sured spectrum is always affected by the low and high frequency suppression
mostly due to the interferometer acceptance. In practice, part of the spec-
trum, which is assumed to be unperturbed, is selected and the bunch length
recovered assuming a known bunch shape. This procedure introduces though
a systematic error due to the fact that the portion of the spectrum consid-
ered may still be perturbed or that the frequency content is not sufficient to
reconstruct the longitudinal bunch profile.

The uncertainty on the bunch length measurement can therefore be eval-
uated as sum of two contributions: statistic and systematic,

∆σtot
z = ∆σstatistics

z + ∆σsystematic
z (4.14)

the former depending on the beam fluctuations coming from the laser insta-
bility (within ±1 ps) and on the RF phase stability, the latter being given by
the experimental apparatus which introduces a filter whose frequency cut-off
makes the reconstruction procedure not precise.

A fluctuation of the laser pulse length of ±1 ps and an instability of the
RF phase of 0.01 deg may produce an error on the evaluation of the bunch
length of 30% as can be inferred by propagating the initial error. However,
by averaging on a sufficient number of measurements, the statistical error is
significantly minimized.

The systematic error can be partially corrected by calibrating the entire
apparatus. This is what we have done at least for the detector whose calibra-
tion curve is shown in the previous chapter. As regards the interferometer
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acceptance and the quartz window transmission, the total transfer function
has been simulated with the THz Transport code, showing a high-pass fil-
ter behavior with a cut-off frequency of 150 GHz in good agreement with
what found by fitting the interferogram with the ”3-Gaussian” function and
analyzing the CDR spectra.

The measured bunch length corrected by the total apparatus transfer
function shows a very good agreement, within 10%, with the analysis per-
formed on the rough interferograms.

4.2.3 Bunch Length and SASE Signal

Several interferometer scans were performed when the beam was set up to
provide FEL laser radiation close to saturation, in order to demonstrate the
non-intercepting and non-invasive nature of CDR diagnostics. Fig. 4.18a)
shows the history of the FEL intensity generating radiation at 30 nm for
both the average and peak photon energy over a long time interval, while
Fig. 4.18b) shows the average and peak energy history for each bunch.

The FEL process would be sensitive to any beam perturbation that can
derive from wakefields generated on the DR screen by the very high beam
current. However during the bunch length measurement no significant dis-
turbance on the FEL radiation has been detected, confirming the effective
non-perturbing nature of the technique.

The electron beam energy is 360 MeV , 8 bunches, 1 nC per bunch, are
transported. ACC1 and ACC2-3 phase are set at the nominal values to get
SASE.

The measured spectra show a noisy behavior due to the fact that the
detector signal was noise-dominated.

Substructures, in agreement with what found in [43], are visible in the
longitudinal beam profile shown in Fig. 4.20.
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Figure 4.18: Energy history of the SASE operation and snapshot of the

radiation spot.

(a) CDR spectra during SASE operation (b) Bunch form factor during SASE oper-

ation

Figure 4.19: Measurements during SASE operation.
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Figure 4.20: Bunch profile.

4.3 Conclusions

The longitudinal dimension of the electron bunch and its dependence on
the RF accelerating phase have been studied taking into account that the
compression of the bunch depends on its energy chirp, whose slope is in turn
dependent on the RF phase. Different phases will then produce different
stages of compression.

The measurements show a clear dependence of the bunch length on the
accelerating phase as also expected from the phase scan (Fig. 4.5), whereas
the same dependence is not evident in other measurements using different
sources and devices (see [40], [44]).

The measured spectra have been corrected by the interferometer accep-
tance, quartz vacuum window and Golay cell frequency response in order to
minimize the contribution of systematic errors.

The measured beam profiles, in good agreement with simulations and
different measurements, present a sharp, asymmetric peak at high frequency
and a long tail at low frequency. The curves are fitted with the function
describing the true TTF profile and introduced in section 4.1.1. In case
of shortest bunch (ACC1 on crest and ACC2-3 phase at 12 deg), the fit
gives a FWHM of 1.2 ± 0.1 ps in good agreement with what measured by
[40] downstream from the first bunch compressor (BC2) using synchrotron
radiation through a Martin-Puplett interferometer.

We can conclude that the electron bunch starting with an rms length of
7.3 ps is slightly compressed by BC2 by a factor less than 2 and shortened
by a factor 5 by BC3 down to 0.8 ps rms.
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Finally, a few measurements performed during FEL operation want to
give not only a good evidence of the non-intercepting nature of DR diagnos-
tics, but also of the non-perturbing feature expected by this technique.
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Conclusions

An accurate beam diagnostics is mandatory in the next generation light
sources which require ultra-high brilliant beams, the brilliance, being defined
as B = I

εxεy
, with I the peak current and εx,y the transverse emittance.

In the present work, we focused our attention on the characterization of
the longitudinal beam size, which is related to the peak current in inverse
proportion, by means of a frequency domain technique.

The autocorrelation measurement of coherent diffraction radiation, per-
formed on the DESY VUV-FEL with an electron beam of 0.3 nC charge
and 380 MeV energy, has shown a clear dependence of the bunch length on
the RF accelerating phase in agreement with the RF phase scan where the
maximum intensity is detected at the phase of maximum compression, i.e.
minimum bunch length. To reduce the systematic error, the spectra have
been corrected by the theoretical transmission of the z-cut quartz vacuum
window, the simulated interferometer acceptance and the calibrated detec-
tor response. At this regard, an accurate characterization of the Golay cell
detector has been performed with three different methods in three different
frequency ranges, showing an almost flat dependence on the frequency and
extending its frequency response to the mm-region. The corrected spectra
have been therefore analyzed to retrieve the electron bunch profile from the
bunch form factor, removing the ambiguity introduced by the missing phase
factor by means of the Kramers-Kronig dispersion relation. The measured
electron bunch profile is pulse shaped, a sharp peak with a long tail, whose
minimum rms length is 0.8±0.2 ps, in good agreement with simulations and
bunch length measurements performed along the VUV-FEL with different
techniques.

Several measurements during FEL operation have been taken to prove the
effective non-intercepting and non-disturbing nature of diffraction radiation.
As a result, the insertion of the screen with aperture either half or completely
open does not affect the FEL generation process, allowing the longitudinal
profile measurement to be performed parasitically.
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Outlook

A Martin-Puplett interferometer, used to obtain the autocorrelation of co-
herent transition radiation from a silicon aluminate (SiAl) foil, will be placed
in the SPARC hall right after the bunch compressor in June 2006. For this
kind of measurement at SPARC, we plan to produce an upgraded version of
the previous setup, front and top views are shown in Fig. 4.21. The inter-
ferometer will operate in Nitrogen controlled atmosphere and some mirrors
will be assessed to be remote controlled in order to improve the alignment of
the entire apparatus. Designs of the new setup are under study.

(a) Front-view (b) Top-view

Figure 4.21: Accelerating module phase scan.

The Martin-Puplett interferometer transfer function has been calculated
also in the SPARC conditions, i.e. 155 MeV electron beam energy and
transition radiation source, but using the same interferometer settings. The
interferometer cut-off is evident in Fig. 4.22 at 150 GHz, in good agreement
with what found experimentally (section 4.2.2).

As regard the Golay cell detector, it would be interesting to complete
the hot-cold calibration with few more bandpass filter in the region of great
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Figure 4.22: SPARC interferometer transfer function simulated with THz-

Transport Code. Wire grids are treated as apertures. Eebeam = 155 MeV ,

transition radiation source.

interest for the bunch length measurement, that is between 200 Ghz and
800 GHz.
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Appendix A

TTF VUV-FEL & SPARC

Parameters
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Units 6.4 nm 30 nm

Electron beam

Energy MeV 1000 461.5

Peak current kA 2.5

rms bunch length µm 50

Bunch separation ns 111

Repetition rate Hz 10 2− 5

Normalized rms emittance π mm mrad 2

rms beam size µm 68 100

rms energy spread MeV 1

Undulator

Period cm 2.73

Gap mm 12

Peak magnetic field T 0.495

Coherent radiation

Wavelength nm 6.4 30

Saturation length m 26.2 17.8

Peak power GW 2.8 1.8

Table A.1: TTF VUV-FEL short wavelength mode of operation and current

mode of operation.
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Units 500 µm

Electron beam

Energy MeV 155

Bunch Charge nC 1.1

rms bunch length @ linac exit mm 1

Bunch separation ns 111

Repetition rate Hz 1− 10

Normalized rms transverse emittance π mm mrad < 2

rms beam size µm 400

rms energy spread MeV 0.3

Undulator

Period cm 2.8

Gap mm 9

Coherent radiation

Wavelength µm 500

Saturation length m 15

Peak power GW ?

Table A.2: SPARC operation parameters.

85



Appendix B

Transparency of Millimeter

Wave Materials

In the design of optical system for millimeter and sub-millimeter wavelength
range the choice of the most suitable material is a critical issue. Diamond
is the only material transparent in almost the whole spectral range, except
for two absorption peaks at 5 µm and 20 µm. However, being diamond
extremely expensive, various plastic materials with suitable properties are
available. The choice of materials depends on losses, dielectric constants
and suitability for ultra-high vacuum (UHV) applications. The window in
the vacuum chamber has to be not only transparent to FIR radiation, but
also such that its dimensions (viewing diameter and thickness) are capable
to sustain the force exerted by atmospheric pressure. The optimum balance
between transparency and UHV compatibility is given by crystalline quartz
cut along the z-axis [?]. Except for a strong absorption peak at 78 µm, the
transmission is almost constant (between 0.6 and 0.7) up to 8 mm as depicted
in figure B.1.

One of the main problems in the wavelength range of interest is due to
the water absorption lines. For this reason, it is worthwhile to operate in
vacuum or in Nitrogen controlled atmosphere.

The low-resolution (interference free) transmission for normal incidence
is calculated from the extinction coefficient k, the refractive index n and the
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thickness d as [45]

T =
(1−R0)

2e−4πkd/λ

1−R2
0e
−8πkd/λ

(B.1)

where R0 = (1−n)2+k2

(1−n)2+k2 is the single surface reflectivity. The transmittance
curves for the most suitable materials in the millimeter and sub-millimeter
wavelength range and for humid air are shown in figure B.1. The data source
for all materials except diamond is reference [46].
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(a) Crystalline quartz (b) Diamond

(c) HDPE (d) humid-air

Figure B.1: Low-resolution (interference free) transmission curve for normal

incidence.
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Appendix C

Detector Calibration: Details

Instruments to calibrate our detector and the related components (attenua-
tor and custom tapered waveguide) in the long wavelength range are vector
and scalar network analyzers; the former are capable of measuring complex
(amplitude and phase) reflection and transmission, while the latter can only
measure amplitudes.

The scalar network analyzer (SNA), which directly drives a millimeter-
wave source module to 110 GHz in waveguide, has been used to produce
monochromatic, linearly polarized radiation1, propagating through a set of
three waveguides. The waveguides are built such that only the fundamental
mode TE10 can propagate within the frequency band 75 - 110 GHz. Each
waveguide is equipped with a directional coupler (DC) which has three output
ports: the two main ports have a 1 to 1 coupling and the third one, isolated
from the second one, is weakly coupled, in the specific case 10 dB, to one
of the two main output ports. The third port of the first waveguide module
extract about 10% of the oscillator power, to be used as a feedback system,
and one of the two main ports feeds a ferrite isolator, which allows power to
travel in one direction only. The following directional couplers feed the scalar
network analyzer (HP 8757D) and are used to pick up the signal, part (10%)
coming from the source (channel A) and part coming in the opposite direction
(channel B). Channel A is used as a reference signal for the normalization of
the output power, while channel B detects the reflected power and depends
on the optics between the source and the detection system. In figure C.1 a
schematics drawn of the experimental setup is shown. A chopper to modulate

1Collaboration with the University of Milano-Bicocca, Department of Physics.
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the CW radiation is inserted between the isolator and the second waveguide,
resulting in the interruption of the transport line. A horn antenna is therefore
needed to collect radiation on the second waveguide. The common part
ends with a variable attenuator necessary to limit the amount of power on
the detector. After that two different end components can be added, as
shown in figure C.1: a powermeter to calibrate the network analyzer and to
evaluate the attenuation due to the optics, that is waveguides, couplers and
attenuator, or the custom tapered waveguide directly attached to the Golay
cell detector to characterize the detector frequency response.

Figure C.1: Optimized Golay cell calibration setup

The network analyzer calibration is needed to know the effective output
power which, in principle, in the ideal configuration of perfect optical cou-
pling, that is without chopper, reaches the detector. Actually, since both a
chopper and a horn antenna are inserted and the transport line open, the
network analyzer calibration will give an estimation of the effects on both
signal attenuation and frequency dependence.

C.1 Network Analyzer and Attenuator Cali-

bration

The first step is the calibration of the scalar network analyzer output power.
In order to get both a clear output signal and an output power incident on
the Golay cell detector consistent with the power it can sustain, we selected
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four values of power from the source, −20 dBm, −15 dBm, −10 dBm and
0 dBm. Eight frequencies in the 75−110 GHz bandwidth have been selected
and for each frequency the power has been recorded from both the analyzer
(Fig. C.2a)), the value being given by the set initial power attenuated by the
propagation in waveguides, and from the powermeter in the configuration b)
of figure Fig. C.2 to check the attenuation factor due to the propagation in
the waveguide.

(a) Network analyzer reading (b) Powermeter measurement

Figure C.2: Source power spectrum for four different initial values of power.

From data a mean attenuation of −9.6 dB in the power source is detected
at −10 dBm due to the waveguides. This value is a good estimation of the
attenuation due to the optics, that is waveguides and couplers and it will
be the correction factor of the source power in the Golay cell calibration
calibration.

The initial source power has been set at 0 dBm, because the lower the
initial power, the worst the analyzer response is, as figure C.2a) shows. How-
ever, even though attenuated by a factor of roughly 10 dBm, the power is
still too high for the detector safety, being 10 µW the maximum input power
it can receive. An attenuator is then needed and its calibration, which pro-
vides the Sij-elements of the scattering matrix has been performed with a
vector network analyzer in the configuration shown in Fig. C.3.

The vector network analyzer has been calibrated first by measuring the
total reflected power in the two local oscillators, S11 (S22) by i) attaching a
wave-guide short on 1 (2) (referred to Fig. C.3), ii) inserting a λ/4 delay
line followed by a short in order to get the phase of the back-scattered wave
changed by π, iii) closing 1 (2) with an absorber to simulate an adapted
dummy load to measure the residual power. Ports 1 and 2 have then been
directly connected to measure the transmitted power travelling from 1 to 2,
S21, and viceversa, S12. From data, S12 and S21 result to be almost identical
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Figure C.3: Attenuator calibration apparatus setup.

with variations within ±0.03 dB. The attenuator has then been inserted
as shown in the scheme above (Fig. C.3) and a minimum attenuation of
0.2 dB measured. The power, calculated as the square absolute value of Sij,
is a dimensionless quantity since it is the ratio to the reference power. The
fraction of power signal absorbed by the dielectric is given by Eq. C.1

A12 = 1− |S12|2 − |S11|2 (C.1)

A21 = 1− |S21|2 − |S22|2 (C.2)

Figure C.4 shows three measurements for the maximum attenuation. The
calibration gives an almost flat curve, variations being within ±0.03%.

Figure C.4: Attenuation curves for the maximum attenuation.
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C.2 Study and Realization of Tapered Waveg-

uides

To reduce the power losses and the frequency dependent effects due to the
insertion of the chopper, a tapered waveguide, shown in figure C.1 (orange
cone), has been studied and built to have a standard flange with rectangular
aperture (x = 2.54 mm, y = 1.27 mm) to ensure a perfect RF coupling with
the last waveguide, an anticorodal conical tapered waveguide with aperture
less than 30 deg and a custom circular flange with radius of 3 mm to match
the detector window and avoid power losses. Simulations to foresee and
evaluate reflected and transmitted power and to ensure, in the technical
design, the transmission of the fundamental mode have been performed by
using the HFSS simulation tool. In fact, due to the complicated geometry, the
TE10 mode is not the only one propagating in such structure, higher order
modes propagate as well, but we can assume the power losses due to the
overmoding nature negligible, confirmations being given also by the tapered
waveguide calibration. The inner surface rugosity is within 1.6 µm, peak-to-
peak. The surface finish is opaque, but this does not affect the rugosity and
it can be partially cleaned by using an ”ultrasonic cleaner”.

Two complementary waveguides have been built and both calibrated in
the configuration shown in figure C.5 to evaluate losses and frequency de-
pendence due to either overmoding or rugosity.

Figure C.5: Technical design of the tapered waveguides in the calibration

configuration.
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C.2.1 Tapered Waveguides Calibration

A vector and scalar network analyzer have been used to characterize the ta-
pered waveguides and both Golay cell detectors. First we have calibrated
the VNA (Agilent HP 8510C) by means of a short, open and load. The two
complementary waveguides have been put in contact and the matrix scatter-
ing elements S11, S21, S12, S22 measured, the RF contact being provided by
a pair of clips, as shown in figure C.6.

Figure C.6: Picture of the tapered waveguides in the calibration configura-

tion.

The data show the transmitted power increases and the frequency depen-
dence becomes flatter when the waveguides, in the configuration shown in the
previous picture, are equipped to provide a good RF coupling. Figure C.7
shows the transmission coefficient for different solutions of RF contacts. As
far as the RF contact is optimized, the transmission coefficient is improved
reaching more than 95% (green curve) of the source power, with absorption
peaks uniformly spaced with a period of roughly 3 GHz, corresponding to
the total length of both waveguides, Ltot = 45 mm, in the configuration of
figure C.6. The peaks can be explained as resonances developed in the two
coupled waveguides which act as a resonant cavity.

By looking at the data in the time domain it is straightforward to detect
and accurately locate discontinuities in the waveguide. By selecting a portion
of the spectrum, it is possible to estimate the losses due to the tapered
waveguides and neglect effects coming from the experimental setup. Figure
C.8 shows two reflection peaks separated by 0.3 nC which corresponds to
discontinuities due to the interface between the tapered waveguide and the
standard waveguide.

Except for periodic reflections due to the discontinuity at the interface
between the two waveguides, a good transmission higher than 80% is shown.
For the detector calibration a better RF contact between the tapered waveg-
uide and the detector window has been established and by measuring the
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Figure C.7: Tapered waveguides transmission coefficient for different RF

contact

Figure C.8: Tapered waveguides transmission coefficient for different RF

contact
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power coming out from the tapered waveguide, neither attenuation nor strong
frequency dependence has been observed as confirmed by figure C.9 which
shows the source power measured with the powermeter located right after the
last waveguide (black curve), the attenuator (red curve) and the two tapered
waveguides in the calibration configuration (green curve).

(a) (b) zoom-in

Figure C.9: Source power spectrum at the end of each component constitut-

ing the transmission channel.

Figure C.9b) is the detailed image, showing a slight (0.3 GHz) back-
shifting in frequency due to the tapered waveguides, but no sensitive power
attenuation is detected.
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Appendix D

Fourier Transform

Spectroscopy

The principles of Fourier transform spectroscopy were discovered by Michel-
son and Rayleigh, who found out how the interference pattern from a two-
beam interferometer, obtained by altering the path difference between the
two beams, is the Fourier transform of the radiation passing through the
interferometer.

Consider a vertically polarized plane wave with the wave vector ~k which
produces an incident electric field given by

~E(t, ~r) = E0 sin(ωt− ~k · ~r)ûv (D.1)

at the beam splitter, ûv being the vertical unit vector; ~k · ~r is a constant
phase which can be neglected. Since the beam divider has wires placed at
45o when viewed along the input beam axis, the incident electric field will be
split in a reflected field ~Er and a transmitted field ~Et such that

~Et(t) =
E0√

2
sin(ωt)

ûh + ûv√
2

(D.2)

~Er(t) =
E0√

2
sin(ωt)

ûh − ûv√
2

At the roof mirrors, the ûh + ûv component will then be reflected with its
plane of polarization altered to ûh− ûv and similarly the ûh− ûv component
will change into ûh + ûv upon reflection.
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As the moveable mirror is moved, producing a path length difference,
2∆x, between the two beams, the electric field components will go back to
the polarizing beam splitter differing by a phase factor τ = 2∆x

c
as given by

Eq. D.3

~E
′
t(t) = ~Et(t− τ) =

E0√
2

sin(ω(t− τ))
ûh + ûv√

2
(D.3)

~E
′
r(t) = ~Er(t) =

E0√
2

sin(ωt)
ûh − ûv√

2

The reflected and transmitted components recombine to produce a total field,
~Ef = ~E

′
r + ~E

′
t, at the analyzer which can be written by using trigonometric

addition formulas as

~Ef (t) = E0

[
sin

[
ω
(
t− τ

2

)
cos

(ωτ

2

)]
ûh + (D.4)

+ sin
(ωτ

2

)
cos

[
ω
(
t− τ

2

)]
ûv

]
(D.5)

The horizontal and vertical components are 90o out of phase and the ampli-
tudes depend on the phase difference, ωτ , resulting in an elliptically polarized
radiation.

Assuming a source with an arbitrary intensity distribution, I(ω), the
intensity of the recombined radiation at the detectors can be written as [40]

Vh,v ∝
∫ ∞

−∞
( ~Ef · ûh,v)

2dt (D.6)

which becomes

Vh(τ) ∝
∫ ∞

0

I(ω) cos2(
ωτ

2
)dω (D.7)

Vv(τ) ∝
∫ ∞

0

I(ω) sin2(
ωτ

2
)dω

The normalized difference interferogram then can be written as

δ(τ) =

∫∞
0

I(ω)(cos2(ωτ
2

)− sin2(ωτ
2

))dω∫∞
0

I(ω)(cos2(ωτ
2

) + sin2(ωτ
2

))dω
(D.8)

=

∫∞
0

I(ω) cos(ωτ)dω∫∞
0

I(ω)dω

being the Fourier cosine transform of the radiation spectrum. Since δ(τ) is
the measured quantity, the frequency spectrum of the incident radiation pulse
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can be obtained by inverse Fourier transforming the normalized difference
interferogram as given by Eq. D.9

I(ω) =

∫ ∞

−∞
δ(τ) cos(ωτ)dτ (D.9)

In the data evaluation, the continuous transform is replaced by a discrete
one (Eq. D.10), since data extend over a finite time interval, depending on
the roof mirror excursion

I(ωk) =
1

N
<

N∑
n=1

δ(τn) exp(iωkτn) (D.10)

N being the number of data points.
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