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1. Introduction 

The majority of existing accelerators are controlled by analog control systems. A fully 

digital solution of such systems has recently become possible with the advent of FPGA chips 

equipped with DSP capabilities. A new generation of digital controllers may integrate new 

tasks like: system identification and simulation, continuous and multichannel measurements, 

massive data acquisition, continuous diagnostics and exception handling, introduction of real-

time feedback between the beam quality (electrical and optical) and system parameters, 

building a rich database of the system behavior in changing working conditions, etc. The above 

tasks rest on the assumption that the idle time, of the accelerator working in pulsed mode, may 

be efficiently used for the intensive DSP calculations.  The introduction of new features is 

expected to result in: increased system safety, shorter design time, less human resource 

requirements, less consumed material and occupied space by the control-diagnostic system, 

less power consumption, increased reliability in adverse environments and lower cost.  

The TESLA accelerator uses nine-cell superconducting niobium resonators to accelerate 

electrons and positrons. The acceleration structure is operated in a standing π-mode wave at the 

frequency of 1,3 GHz. The RF oscillating field is synchronized with the motion of a particle 

moving at the velocity of light across the cavity (see figure 1). The LLRF (low level radio 

frequency) cavity control system for the TESLA project has been developed in order to 

stabilize the accelerating fields of the resonators. The control section, powered by one klystron, 

may consist of many cavities. One klystron supplies the RF power of 10 MW to the cavities 

through the coupled waveguide with a circulator. The cavities are driven with pulses of 1.3 ms 

in duration and the average accelerating gradients of 25 MV/m. The control feedback system 

regulates the vector sum of the pulsed accelerating fields in multiple cavities. The fast 

amplitude and phase control of the cavity field is accomplished by modulation of the signal 

driving the klystron. The cavity RF signal is down-converted to an intermediate frequency of 

250 kHz preserving the amplitude and phase information. The ADC and DAC converters link 

the analog and digital parts of the system. The digital signal processing is applied for the 

detection of the field vector as the complex envelope represented by real - I (in-phase) and 

imaginary – Q (quadrature) components (I/Q detector). The digital controller stabilizes the 

complex envelope of the cavity wave, according to the desired set point. Additionally, the 

adaptive feed-forward is applied to improve the compensation of repetitive perturbations 

induced by the beam loading and by the dynamic Lorentz force detuning. 
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Figure 1. Cavity environment and simplified block diagram of the cavity control system 

 

The theoretical verification of the existing superconducting cavity model [1-3] lead to 

the synthesis of a digital algorithm efficiently implemented in the FPGA structure. This cavity 

simulator was used for evaluation of the control algorithms and for investigation of the optimal 

control method. The FPGA hardware implementation of the cavity model is intended for real 

time operation. 

  

2. The cavity model 

2.1 Electrical circuit model 

The following considerations are limited to a single cavity represented as LCR circuit 

coupled to a waveguide driven by a klystron. This approach is sufficient for the purpose of 

cavity control modeling [1-3].  The circuit model of the cavity environment is presented in 

figure 2. The currents (J) and voltages (U) are represented in Laplace  space. The klystron as a 

power amplifier is modeled by the RF current generator Jk driving the waveguide via a 

circulator. The waveguide, as a transmission line, is parameterized by characteristic impedance 

Z0 and time delay Tw. The cavity is represented as resonant LCR circuit with impedance Zc(s) = 

(1/R + sC + 1/sL)-1 coupled to the waveguide. Beam loading is modeled as a current source -Jb 

supplied by the electromagnetic field of the cavity. The bunched beam current has  ~2 ps pulse 

duration, 1 MHz rate and an average value of 8 mA. 
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The forward wave is represented by current Jf  and voltage Uf = Jf ·Z0. The reflected 

wave, represented by current Jr and voltage Ur = Jr·Z0  is terminated by the circulator load, 

matched to the waveguide (Jf  = Jk). Superposition of the forward and reflected wave, 

represented by current J1 = Jf - Jr  and voltage U1 = Uf + Ur = (2Jk - J1)·Z0  drives the coupler, 

which converts the signals according to transformation ratio 1:N. The output signals of the 

coupler are represented by current J2 = J1/N and voltage U2 = NU1 = Uc = (2Jk/N - J1/N)·N2Z0. 

Superposition of the output current of the coupler and beam loading results in the cavity current 

Jc and cavity voltage Uc, related by impedance Zc. 

 

Figure 2. Circuit model of cavity environment 

 

Introducing the cavity loaded impedance ZL=N2Z0║Zc (parallel connection) and 

defining the  transformed generator current Jg ≡ Jk /N, results in the cavity voltage Uc =  (2Jg - 

Jb)·ZL = J·ZL. Therefore, the cavity loaded impedance ZL(s) can be represented by the transfer 

function in the corresponding forms:  

ZL(s) = (1/RL+ sC+1/sL)-1 = ω0·ρs/(sω0/QL + s2 + ω0
2) = ω1/2·RL/(ω1/2 + (s2 + ω0

2)/2s)        (1) 

where, the following secondary parameters (derived from the primary LRC parameters) are 

applied: resonance frequency  ω0 = 2πf0 = (LC)-½, characteristic resistance ρ = (L/C)½, shunt  

resistance RL ≡ R║N2·Z0, loaded quality factor QL = RL/ρ, half-bandwidth (HWHM)  

ω1/2 = 2πf1/2 = 1/2CRL = ω0/2QL.  

Due to the stability of the RF generator frequency ωg, and narrow resonator bandwidth, the 

cavity voltage can be modeled in the time domain as analytical signal represented as a vector 

or phasor in the complex domain: 

u(t) ≡  [ur, ui] ≡ ur + iui = a(t)·(cos(ωgt + φ(t)) + i·sin(ωgt +φ(t))) = a(t)·exp(i·(ωgt +φ(t))),     (2) 

where ur is a real signal and ui its Hilbert transform; amplitude a(t) and phase φ(t) are slowly 

time-varying parameters relative to the period of the RF signal carrier. 
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The cavity current is modeled as an analytical signal j(t) = 2jg(t) - jb(t), where jb corresponds to 

the ωg Fourier component of the beam loading current. The relation between the current and the 

voltage is given in Laplace space: 

U(s) = J(s)·ZL(s)                                                       (3) 

where U(s) and J(s) = 2Jg(s) - Jb(s), are Laplace transforms of the analytical signal for the 

voltage and current respectively. 

The low level RF representation of the cavity signal in the time domain is the complex 

envelope derived from the complex demodulation (down conversion) of the analytical signal, 

which is obtained by applying the operator exp(-iωgt) for a given frequency ωg. Vice versa, the 

complex modulation (up conversion) of the envelope is obtained by applying the operator 

exp(iωgt) and yields the analytical signal for a given frequency ωg. The complex envelope for 

the cavity current i(t) and voltage v(t) can be represented as a vector or phasor by its real I - in-

phase, and imaginary Q - quadrature components as follows (for the voltage case): 

[I, Q]voltage ≡ v(t) ≡  [vr, vi] ≡  vr+ ivi ≡ u(t)·exp(-iωgt) = a(t)eiφ(t) ≡ [a(t)cosφ(t), a(t)sinφ(t)].   (4) 

The signal relation is modeled by the flow graph according to figure 3. 

 

 

 

 

 

 

 
Figure 3. Cavity signal-flow graph for complex envelope and analytical signal 

(left-right arrow ↔ means Laplace transformation) 

 

The successive operations, presented by the signal-flow graph in figure 3, yield the 

direct relation between the cavity input and output 

V(s) = I(s)·ZL(s+iωg),                                                         (5) 

where V(s) and I(s) = 2Ig(s) - Ib(s), are the Laplace transforms of the complex envelope for the 

voltage and the current respectively. 

The resultant cavity transfer function is transformed to a low-pass filter. The analytical form of 

impedance can be simplified for signals with narrow spectral range in comparison with the 

generator frequency close to the cavity resonance frequency. Then, for |s| << ωg ≈ ω0 yields: 

ZL(s+iωg) ≈ ω1/2·RL/(s +ω1/2 – i∆ω), where the cavity detuning is 2π∆f = ∆ω ≡ ω0–ωg. 
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The complex envelope relation for the cavity signals is written in Laplace space as follows: 

s·V(s) = (-ω1/2 + i∆ω)·V(s) + ω1/2·RL·I(s).                                       (6) 

Moving to the time domain yields the state space equation with v(t) as a state vector of  the 

cavity electrical model: 

dv(t)/dt = Ae·v(t) + ω1/2·RL·i(t),                                            (7) 

where v(t) and i(t) = 2ig(t) - ib(t) are the time dependent complex envelopes of the voltage and 

current respectively and Ae = -ω1/2+i∆ω is the phasor.  

The resultant state space equation for the complex envelope depends only on the cavity 

bandwidth and detuning. This simple relationship for the cavity envelope allows for a control 

system modeling within the low-level frequency range. The phasor solution of the state-space 

equation for the current step input i0 is as follows 

v(t) = i0·ω1/2·RL·(exp(Ae·t) - 1)/Ae for  time  t ≥ 0.                         (8) 

The step response of the cavity voltage [I,Q]  components and the corresponding envelope 

graph are presented in figure 4 for a driving current of i0 = 32 mA (ig=16 mA, ib=0, RL = 1560 

MΩ, f1/2 = 216 Hz, detuning range ∆f = -400 ÷ +400 Hz).  

 

 

Figure 4. The step response of the cavity voltage envelope represented by [I,Q] – components 
and the corresponding envelope graph – trajectory of the [I, Q] vector for different detuning. 
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2.2. Electromechanical model 

 The cavity has a high loaded quality factor QL ~ 3·106 and a narrow bandwidth of 

about 430 Hz (FWHM). The cavity is sensitive to mechanical distortion caused by 

microphonics and Lorentz force, changing the resonator frequency. The cavity model is non-

stationary with a time varying detuning ∆ω. A value of the cavity detuning can be comparable 

to the cavity bandwidth in the real operation condition. This cavity parameter has two dominant 

deterministic components: the Lorentz force detuning and the initial predetuning. The 

mechanically biased predetuning attempts to compensate the EM forced detuning factor, during 

operation of the cavity. The mechanical model of the cavity describes the dynamic Lorentz 

force detuning which depends on the time varying field gradient [2]. It is based on a linear 

relationship for each of the independent mechanical modes of the cavity with resonance 

frequency fm and mechanical quality factor Qm for a given mode. Each of the mechanical  

equation for the m-th mode: 

dwm(t)/dt = Am·wm(t) + Bm·v2(t),                                                  (9) 

where wm(t) = [∆ωm(t); d[∆ωm(t)]/dt] is the state vector and consists of the time-varying 

detuning ∆ωm(t) and its time derivative; Am[2x2] = [ 0,1; -(2πfm)2, -2πfm/Qm] is the system 

matrix; vector Bm[2x1] = [0; - (2πfm)2·Km] is the input matrix where the parameter Km is the 

Lorentz force detuning constant.  

The resulting cavity detuning is ∆ω(t) = ∑∆ωm(t) + ∆ω0, where  ∆ω0 is the initial predetuning.  

The main parameters of the cavity electromechanical model are gathered in table 1. The 

three dominating modes are considered for the mechanical model. 

The pure mechanical model is weakly damped. The dominating oscillations are caused by the 

mechanical modes (table 1) driven by the square of the field gradient. 

 

Table 1. 
CAVITY ELECTRICAL parameters CAVITY  MECHANICAL  modes parameters 

f0 = 1300 …………………resonance frequency [MHz] 
ρ = 520 …………………..characteristic resistance [Ω] 
QL = 3·106………………………..loaded quality factor 
RL = QL·ρ = 1560………………..load resistance [MΩ] 
f1/2 = f0/2QL  = 216……………….half band-width [Hz] 
∆f =390 …………………………….pre-detuning [Hz] 

f = [235,290,450]……resonance frequencies vector 
[Hz] 
 
Q = [100,100,100]…… quality factor vector 
 
K = [0.4, 0.3, 0.2]……Lorentz force detuning constants 
vector [Hz/(MV)2] 
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3. Digital processing of the cavity model 

3.1 Discrete cavity model 

A discrete processing of the cavity algorithm has been developed for a digital 

implementation of the cavity model. The continuous model of the cavity behavior, presented in 

equations (7) and (9), can be approximated by recursive calculations in a finite number of 

steps. Applying the Euler approximation for time the derivative of a general variable x: dx/dt ≈ 

(xn+1 - xn)/T, yields for successive n-th and (n+1)-th samples, with time interval T and with 

identity matrix 1, the following recursive equations, respectively: 

• for the electrical model (7) in the vector representation with matrix Ae = [-ω1/2, -∆ω; ∆ω,-

ω1/2], 

vn+1 = (1 + T·Ae)·vn  + T·ω1/2·RL·in,  where in = 2(ig)n – (ib)n,                           (10) 

• for the mechanical m-th mode (9), 

(wm)n+1 = (1 + T·Am)·(wm)n  + T·Bm·(v2)n.                                          (11) 

Applying simplified notation by ignoring time indices and by introducing new symbols yields, 

respectively,  

• for the electrical model: 

                 v  = E*v + ig – ib,                                                          (12) 

where E = [1-T·ω1/2, -T·∆ω; T·∆ω, 1-T·ω1/2] is the discrete system matrix and ig = T·ω1/2·RL·2ig 

is the unified input signal for the generator and ib = T·ω1/2·RL·ib,  for the beam loading,  

• for the m-th mechanical mode:  

  wm = (1+T·Am)·wm + T·Bm·v2.                                             (13) 

Applying the common state vector w (dim = 6 x 1) and the common matrix A (dim = 6 

x 6) and the common vector B (dim = 6 x 1), for the mechanical model with 3 modes, yields: 

w = A*w + B*v2,                                                        (14)  

where the partial vector and matrices  with indices range (2m-1: 2m) for the m-th mode are 

defined as: w(2m-1:2m) = wm ,  A(2m-1:2m, 2m-1:2m) = 12+T·Am,  B(2m-1:2m) = T·Bm for m 

= 1:3. 

The resultant detuning of the cavity is ∆ω = ∑w(2m-1) + w0, where  w0 is the  initial 

predetuning. 

The discrete cavity algorithm, for the electrical and mechanical parallel iterative processing, 

has been implemented by applying Matlab code with the sampling time T= 1µs. 
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3.2 Cavity simulator algorithm 

The functional diagram of the cavity digital simulator algorithm, according to the 

electromechanical model, is presented in figure 5. The electrical part of the cavity simulator is 

implemented in an arithmetical function block using DSP functions. The arithmetic procedure 

is realized according to the state space relation with state vector v representing [I, Q] 

components of the cavity output envelope. The discrete system matrix E depends on the cavity 

detuning ∆ω and the cavity bandwidth ω1/2. A normalized current generator with input signal ig 

and the beam ib, drives the DSP unit. The non-stationary detuning ∆ω is a parameter of the 

matrix E. The input and output registers correspond to the time delay of cavity environment 

(waveguide). The intermediate frequency IF modulator converts the cavity output vector to the 

signal v_m of frequency 250 kHz (reciprocal operation to the I/Q detection).  

 

 

Figure 5. Functional diagram of the cavity simulator algorithm 

 

The mechanical model of the cavity is implemented in the DSP unit, according to the 

state space relation, with the state vector w. The time-varying detuning and its time derivative 

are two state-variables for each mechanical mode. The system matrix A and the vector B 

depend on the following cavity parameters: the resonance frequency, the quality factor and the 

Lorentz force-detuning constant for each mechanical mode. Each of the mechanical modes is 

driven by the square of the cavity field gradient v2 generated from the electrical part of the 
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model. Three dominating resonance frequencies according to the table 1 are considered in the 

cavity model and the superposition of all modes, together with the initial predetuning w0, yield 

the resultant detuning ∆ω. 

 

3.3 Cavity controller algorithm  

A model of the control system has been developed to investigate different operational 

conditions of the cavity. The functional diagram of digital controller algorithm is presented in 

figure 6. The input signal v_m of intermediate frequency fi= 250 kHz from the cavity simulator 

is demodulated by the I/Q detector unit. The external [I, Q] vector can be selected by the MUX 

switch. The resultant cavity voltage envelope [I, Q] is calibrated, so as to compensate the 

channel attenuation and phase shifting of individual cavities. The Set-Point table contains a 

signal level, which is compared to the actual cavity voltage. The multiplier, working as a 

proportional controller, amplifies the error signal according to the data from the GAIN table 

and closes the feedback loop. The Feed-Forward table is applied and the resultant output signal 

ig can drive the cavity simulator. 

 

Figure 6. Functional diagram of the controller algorithm 
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care due to the limited resolution of the parameters and variables of the DSP. Normalization 
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implementation with fixed point arithmetic. The actual range of the involved values extends up 

to seven decades (~223) for the cavity model. The best numerical accuracy for each linear 
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the values within the given N-bit resolution range, common for all involved quantities. The 
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range of the scaled parameters and the maximum values of the variables has been stretched to 

±2N-1 for each operation. Concluding the DSP operation, the obtained product is rescaled by bit 

shifting (division by power of two) to preserve its original normalization. 

The main arithmetic processing, for each actual variable xi, is a linear combination of 

the corresponding variables xk with the parameter aik as follows: ∑=
k

kiki xax . The equivalent 

DSP operation is: ik
k

kiki S/XAX ∑= , with the scaled variable Xi = si·xi with a scaling factor si, 

the scaled parameter Aik = sik·aik with a scaling factor sik, the scaled variable Xk = sk·xk with 

scaling factor sk, and the resultant rescaling factor Sik = sik·sk/si.  The number of bits equals to 

log2(Sik) for the rescaling shift and for each multiplication. 

The discrete cavity model from par.3.1., was adapted for the hardware implementation. 

The scaled model with integer-valued N-bit resolution was developed in the Matlab system as 

the pattern for the VHDL coding for the FPGA implementation.  The numerical accuracy of the 

digital model was tested for different bit resolutions, and diverse scaling factors. The full bit 

resolution of the MATLAB cavity model, with normalized parameters and variables, was 

considered as a reference. 

The relative step response is shown in fig.7 for all variables for the 18-bit resolution 

model compared to the reference with full resolution. Two cavity models (digital 18-bit 

resolution and full resolution one) were driven with the same input signal generator, equivalent 

to ~14,7 mA  current pulse. The total time of the simulation is 10000 µs and is long compared 

to the real operating pulse of 1500 µs. Due to the good agreement the curves for two models are 

hardly distinguishable.  

The relative mean square error of the complex envelope Err(N) for N-bit resolution was 

calculated for n steps according to the expression: 

Err(N) = ∑|(VN)k - (Vref)k|2 / ∑|(Vref)k|2,  for k = 1:n,                                  (15) 

where (Vref)k is the complex sample of the reference envelope for the k-th step, (VN)k is the 

complex sample of the N-bit resolution envelope for the k-th step. 

The 18-bit resolution cavity model was considered for the final hardware realization with the 

relative mean square error Err(18) = 5.1e-3. The results for different bit resolutions are 

presented in fig.8. However, for nonlinear systems like this they depend on the detailed 

simulation conditions. 
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Figure 7. Relative step response for the 18-bit resolution model compared to the reference with 
full resolution (curves are hardly distinguished for two models). 
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Figure 8. Relative mean square error of complex envelope for different bit-resolution of cavity 
model (total time of the simulation - 10000 µs). 

 

The 18-bit resolution version of the FPGA cavity simulator is expected to be quite sufficient 

for this simulation. The limited validity of the heuristic mechanical model of the cavity and 14-

bit resolution of the preferred analog-to-digital converter do not require a resolution of better 

quality. The main parameters of the FPGA simulator are combined in table 2. 

Table 2 

DSP resolution DAC and ADC 
Resolution 

Sampling 
time 

Minimum 
Processing time 

Maximum 
carrier frequency 

18 [bit] 14 [bit] 1 µs 200 [ns] 1.25 [MHz] 
 

 

4. FPGA based cavity simulator integrated with controller 

A hardware layer of the cavity simulator and controller system (SIMCON) is realized 

with the commercial development kit [4]. The kit consists of the main board (MB) integrated 

with a daughter board (DB). The DB is realizing the hardware DSP algorithms. The DB 

possesses two fast 14-bit, 65MHz ADC and DAC and a FPGA VirtexII chip equipped with 

18x18 bit multiplication circuits. The adaptation of the kit to the needs of the user standard is 

realized by embedding it on a carrier board 6HE EURO, as presented in fig.9. The SIMCON 

card occupies two slots in the VME 6U crate. The power supply is provided either from the 

VME bus or from the power unit provided with the board. The Enhanced Parallel Port (EPP) 
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protocol is used to communicate with the board because the EPP has a simple implementation 

in the FPGA chip. The hardware realization of the interface was described in detail in [5-7]. 

 

 

 

 

 

 
 
 

Figure 9. Hardware layer of the SIMCON system. PCI/USB kit board [4] positioned on the VME 
carrier 
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The integrated SIMCON system is realized in form of a parameterized structure of 

functional blocks in VHDL. The AD and DA converters are located on a daughter board. The 

optional connection of the external control to the simulator or controller of the FEL cavity is 

possible via the provided I/O ports. The digital TTL inputs, present on the VME board, were 

used for synchronization with the 1MHz clock and the 10 Hz trigger. A signal of 10Hz is the 

major trigger of the accelerator and 1MHz is the sampling frequency of the down-converted 

signal. These signals are distributed in the existing analog generation of the whole control 

system of the FEL. The functional structure of the SIMCON is presented in figure 10. 

 

 

A core of the SIMCON is built of two nondependent modules: the CAVITY 

SIMULTOR and the CAVITY CONTROLLER. They are programmed inside the FPGA chip 

as hardware DSP algorithms. The algorithms use fast internal multiplication components. The 

blocks work in parallel in real time. They are controlled by programmable parameters provided 

by the PROGRAMMABLE DATA CONTROLLER block. The parameters are scalars (cavity 

and controller data) and vectors (feed-forward and beam data). The set parameters stem from 

the algorithms described in detail in [3]. 

 
 

Figure 10. Multilayer functional structure of the SIMCON 
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The block of INPUT MULTIPLEXERS allows the programmable input of the control 

signals of controller and simulator blocks. Realization of the following functions is possible 

through this block: internal digital feedback loops, connection of external analog signals from 

AD converters, setting of test vectors initially programmed in the DAQ block (described 

below). The OUTPUT SWITCH MATRIX selects different outputs to the DA converters or 

data registration in DAQ block. A suitable configuration of the switch matrix gives appropriate 

analog feedback between the cavity controller and simulator. 

The block DATA ACQUISITION (DAQ) allows for current monitoring of the most 

important signals in the system. These may be input and output signals or internal results from 

the DSP processing in the algorithms of cavity simulator and controller. DAQ block is used as 

programmable signal generator for the tests of the input and output signals.  

The block INPUT PROCESSING provides a conversion of values between physical 14-

bit resolution of ADC converters and 18-bit resolution of internal DSP processing, the input 

signal calibration including amplification and regulated shift of the constant voltage value, as 

well as smoothing of the input channels (preprocessing) using a method of averaging. The 

block OUTPUT PROCESSING provides conversion between physical 18-bit resolution of the 

internal DSP processing and 14-bit resolution of DAC. 

The block TIMING & STATUS CONTROLLER provides internal synchronization of 

all processes of the SIMCON system. It selects between the external clock signals provided by 

the accelerator control system or clocks from external generators. The latter case enables 

autonomous work of the system. Switching of the operation modes of the system is possible, 

i.e. performing simulation in real time or in the step simulation regime with reference vectors.  

The programming layer of all blocks of SIMCON system is realized by the control 

computer system with the aid of the COMMUNICATION CONTROLLER block. The EPP 

hardware transmission protocol was used for this purpose. The signal distribution bases on the 

Internal Interface standard, described in detail in [7]. 

The step operation and vector stimulus mode is applied for testing the FPGA device 

coupled to the MatLab system via the COMMUNICATION CONTROLLER. The FPGA 

signal processing was verified according to the desired algorithm. To realize online processing, 

a synchronous 40MHz pipeline bus is used. The system flexibility, obtained in this way, gives 

the possibility to choose arbitrarily the number of clock periods necessary to do the successive, 

partial calculations by the DSP blocks.  
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5. Software simulation and results of hardware test procedure 

The FPGA cavity simulator with controller is coupled to the Matlab system via a 

communication interface. The real time tests are carried out according to the schematic block 

diagram shown in figure 11. The Matlab system initiates the simulation process for given 

primary parameters of the cavity model according to table 1. The secondary, internal 

parameters for the FPGA system were calculated as described in the second paragraph. The 

required data for the Set Point and Feed Forward tables of the controller are generated 

according to the cavity model by an iterative processing striving to the optimal control. The 

Matlab simulation process is verified by a plot. The resulting example, for the real operational 

condition, is presented in figure 12. The cavity is driven in pulse mode forced by control 

feedback together with the direct control by feed-forward . During the first stage of the 

operation, the cavity is filling with a constant forward power, resulting in an exponential 

increase of an electromagnetic field, according to its natural behavior in resonance condition. 

When the cavity gradient reached the required final value, the beam loading current is injected, 

resulting in the steady-state flattop operation. Turning off both, the generator and the beam 

current, yields an exponential decay of the cavity field. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 11. Functional diagram for the one chip FPGA system 
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Figure 12. Matlab simulation of the cavity model for real operation conditions 
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The resulting parameters and data are loaded to the FPGA internal memory. The 

controller can drive the cavity simulator via the internal digital connection (18-bit data 

resolution). The FPGA system can run itself cyclically according to the given data tables. The 

cavity simulator and controller can be also driven independently via the external connection 

applying 14-bit ADC. The 14-bit DACs convey data from the cavity simulator or from 

controller outside FPGA system.  

The real time tests were carried out according to the described simulation procedure. 

The FPGA system runs itself cyclically according to the given data tables and the output 

signals are monitored by oscilloscope. The simulation results corresponding to fig.12 are 

presented in figs. from 13 to 16. 

 

 
 

Figure 13. Output envelope of the cavity simulator driven by feedback and  feed-forward 
mode 
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Figure 14. Output envelope of  the cavity controller operated in feedback and feedforward 
mode 

 

 
 

Figure 15. Output envelope of  the cavity controller with short pulse beam compensation 
during flattop level 
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Figure 16. Cavity simulator output for the 250 kHz modulated signal  
 

 

 

6. Conclusions 

The TESLA cavity simulator integrated with controller has been implemented for the 

control system purpose, applying FPGA technology. An efficient DSP algorithm was 

developed describing a cavity model in a comprehensive way. Proper scaling of parameters and 

variables in the DSP program provides an optimal numerical precision for a given bit 

resolution. The FPGA cavity simulator has been investigated for different operational 

conditions: step response, feed-forward and feed-back mode. The step operation and vector 

stimulus method is proven to be efficient for testing a FPGA device coupled to the Matlab 

system. The FPGA implementation with 18-bit resolution is sufficient for simulation purpose 

and control system testing. The cavity simulator can be adopted for superconductive and 

normal conductive resonator models by applying different sets of parameters. The very 

confined resources occupied by the 18-bit resolution model (inside a single programmable 

chip) allow for prospective simulation and control of a large number of accelerator cavities by 

a single FPGA chip. 
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