Technical University of Lodz
Departament of Microelecronics and Computer Science

MSc Thesis

Distributed System for Designing Reliable Digital $stems Using
Genetic Algorithms

Tomasz Norek

Student number: 106121

Supervisor:
Grzegorz Jabtaaski, PhD

Auxiliary Supervisor:
Dariusz Makowski, MSc

todz, 2005

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Streszczenie

Uktady programowalne stgjsic coraz waniejsze w dzisiejszych zastosowaniach
elektronicznych. Ich wszechstrorfiéojest coraz ogciej wykorzystywana ji nie tylko
do testowania prototypowych rozwen, ale nawet do produkcji wdzen w matych
seriach, gdzie koszt wytworzenia specyficznego dikierzemowego znagzo wptyrtby

na cer ostatecznego produktu. Ta uniwersaingest take zrodiem stabéci uktadow
programowalnych, poniewastap sie one wraliwe na zjawiska zachodeze w krzemie
pod wptywem promieniowania. Praca ta opisuje gitechnik zapobiegania negatywnym
skutkom takich zjawisk — aycie algorytméw genetycznych do zaprojektowaniaiejak
konfiguracji uktadu programowalnego, ktéra mimo ami powodowanych przez
promieniowanie w niej samej, zachowa prawidiofunkcjonalnd¢ uktadu. Poniewa
symulacja uktadow programowalnych jest zadaniem agapcym duwych mocy
obliczeniowych, praktyczna €& pracy obejmuje budogv rozproszonego systemu
do obliczéh genetycznych i zycie tego systemu do przeprowadzenia symulacji
weryfikujacych przydatn& wyzej wspomnianej techniki. System rozproszony okakat
bardzo dobrze spetliaswoje zadanie — dat mlowos¢ wykorzystania diej mocy
obliczeniowej bezadnych dodatkowych kosztéw. Symulacje przeprowaezony uyciu
systemu pozwolity na zmniejszenie prawdopodidti@a powstania wadliwej konfiguracji
przyktadowego ukladu ponad 50-krotnie. Praca zawierdwnig wyjasnienie
mechanizmow oddziatywania adych typow promieniowania z uktadami krzemowymi,
opis technik zapobiegania negatywnym skutkom takiegidziatywania, opis typow
ukladow programowalnych, opis miovych skutkébw jakie mee wywota
promieniowanie w tych ukladach (rozdziat 2), wyjeenie zasady dziatania algorytmow
genetycznych (rozdziat 3). Struktura systemu rogpmoego #ytego do symulacji wraz
z krotka charakterystyk srodowisk uywanych do budowy systemdéw rozproszonych
zostata przedstawiona w rozdziale 4. Rozdziat 5 eege wyniki uzyskane podczas
symulacji. Rozdziat 6 podsumowuje wyniki, zawieraiogki dotycace praktycznego

uzycia zaprezentowanego rozgania.

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Table of Contents

STRESZCZENIE ..o e e ree e e nr e e eaaa s 2
1. INTRODUCTION ..ottt e e et e e et e e e et e e e et e e esba e e eennnaeees 5
i R = 0 N | =0 1 €10)Y IS TSROt 6
2. IMPACT OF RADIATION ON PROGRAMMABLE CIRCUITS.........c... wreeeen. 7
2.1. RADIATION AND MATTER INTERACTION ...vutiiiiiieiteeieeiieeteeeneesneeteensesnnsennessnees 7
2.2. RADIATION EFFECTS INSILICON .. .cuuiiitieiieeetee et ee it e e et e et e et eeeemnneeenneeeaneeenneeens 8
2.2.1. CumMUIAtIVE EffECTS ... 9
2.2.2. Single EVENt EffECESccoviiiiiiiiie it i et 11
2.3. MTIGATION TECHNIQUES.itituititneeiteeeteeeieeesieeesteeesnaeeraneesneesnaeesnersnaersnnns 13
2.4, FROGRAMMABLE CIRCUITS ... iituiiitieitieeite ettt e e et eeeae e et e e st e e enaneean e eaneesanaeeaneaees 24
] I 5 1R 24
(O = 1 I PP 26
P G AS ..o ——— et —n——aaaaa 28
Radiation influence on the programmable Circuits............ccccvieiiiiiiiiiienn, 32
3. APPLICATION OF GENETIC ALGORITHMS IN FAULT-TOLERANT
CIRCUIT DESIGN ...oiiiiiiiieeiee ettt e e et e e et e e et e e e et eeesenesaneeeenans 35
3.1, CENETICALGORITHMS. ... cituiiteeeteeeieeet ettt e e et eeesa e s raeeastessneesneesnaeesnaeesneeenns 36
3.1l 1dEA Of GAS .. 36
3.1.2. Pros and ConS Of GAScoiiuiiiiie e eemeee et e e e e 46
3.1.3. Genetic AlgOrithms ISSUEScccoiiiivit e e ettt e et 48
3.1.4. Genetic Algorithm for Circuit DeSIgNuceeeriiiiiiiiiiiiiiiiiiiiieeeeeeeeeeae 55
Random NUMDEr GENEIALOrcoovuiiiiiemmceme et e e 55.
Chromosome repreSENTAtIONeeeeececccce e eeee e e e e e e e e e e e 56
FItNESS TUNCHION ... e e e e e et e e e e e e e eaaaas 58
(ST RS o= 1 (=] £ R 64
Chromosome CroSS-0Ver OPEratOrSiiieeeeeeeeriiieeeeeeeiiie e e e e e eeaie e e e eeneanns 64
EVOIULION PrOgramcccooiiiiiiiii ettt 66
4, DISTRIBUTED SYSTEM ..ottt e e e e e e eaaans 74
4. 1. SISTEM STRUCTUREuiittitttetti ettt eeeteeeteeetessteeennaeestneeetnee st eesneesnaessnaeernnns 75
SYSIEM MANAGET ... iiitiiieeiie et e s e et e e e et e e e et e e eetneeesrnnnaaeeees 75
COMPULING NOGE ...ttt e e eee s 80
CONrOl PANEL ...ceieieeeee e e ar e 81
4.2. DSTRIBUTED ENVIRONMENTS. . .ittiiiteitieeitteeeteeeteeeteestneesnneessneesneessneessnnees 82
Remote Procedure Call (RPC).......coooiiiiiiiii et aeeaan 3.8
Distributed Component Object Model (DCOM)......ccccuuiiiiiiiiiiiiiiiiiiiieeeeennn 84
Common Object Request Broker Architecture (CORBA)...........................85
Remote Method Invocation (RMI).........cooeiiiimmmm e 88
Choice of distributed object environMeNtcccceeeiiiiiiiiiiii e 90
CORBA INEIACES ... it e e 90

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

5. SIMULATION RESULTS . ..ottt e et e e e eand 93.
Distributed system effiCIENCYoi e 93
SIMUIAtIoON PrOCEAUIE........coiiiiieiee e 94
Crossover operators COMPANISONccevuteeeremmateeeeeiiine e e eerire e e e eeri s 95.
Fitness Scalers COMPAriSONoovi s oo e e e e e e e eeens 98
Mutation Probabilityccoooiiiiiiii e 101
Length of the SEgMENT ... e 106
Algorithms comparison (final simulation)cccc.ciiiiiiiiiiiiic e, 109
SUMIMEBIY .. e e e e e e e e et et e e e bbb s 113

6. SUMMARY AND CONCLUSIONSot e e 116

e o o = N[O i P 118

F N SN o N[1 G S 121

AL, SYSTEMREQUIREMENTS. .. iituiiiieittteetieetteeeteeeteeeteesrneensaeesnaessnaesaeeerneeenns 121
A2, SYSTEMINSTALLATION Luittiitiitniiteiteetittnetteettesnessnesrssnasssnssnsessetsesnsesnseanaes 121
YA T 1T N LT T =) 2 I = 121
A3 1. GENELIC MANAGEL ieiiiiiiie et 121
NG 2 € 1Y o 11 1 o AN [0 o [121
A.3.3. GENEUC PANEI ...ceveieeiee e 122
A.4. LOGFILES, SNAPSHOTFILES AND SYSTEMRESUMING.....ccvvveviiiniiiiiiieeeeeeas 122
A5, SYSTEM CONFIGURATION. . .cutitutitneeteetietttteetsentstnestsrneensesnsssnertaeeneesnsesnees 123
A.6. EXTENDING THE SYSTEM CAPABILITIES ..vuivnietiieniiieeieenesaneeteenseenessnsennneeanss 125
Y A 2 =V I @ T = 125
o s [ed0] 1Y/ =] 4 (] PSPPI 126
(O o (0] 110111 {o S 126
A.8. ARCHITECTURE AND REFERENCE FILES.....ccutiuuiitienieenieteeteensesneesssneennsenss 127
F N (o 11 C=To (8 | (=T | (R 127
RETEIENCE FlE... .ot e e e e enaa e 127
N N o o N | T G = T 129
ORI Y = 15] G 132

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

1. Introduction

The programmable circuits are becoming more andemmportant in contemporary
electronic applications. Application Specific Intaged Circuits (ASICs) usage is justified
only in high-volume projects. In most of the othasks programmable circuits of many
kinds are satisfactory and cost-effective solutiofheir possibility of changing
the configuration by the user is a great advantagkresults in circuit flexibility, but can
also become a curse when the device is placed enhtgh radiation environment.
The device configuration can be changed by theatiaai particle and result in functional
failure. Chapter 2 describes mechanisms of raditiatier interaction, radiation effects
mitigation techniques, the types of programmabileuds and potential effect of radiation
on those circuits.

One of the techniques, that can improve circuitibgity, is a formulation of special fault-
tolerant configuration, which despite some changets contents retains the functionality
of the circuit. However, there are no widely avaléatools for the design of such
configurations. Possibly the genetic algorithms banused for that purpose. Chapter 3
explains the idea of genetic algorithms and preséim¢ details of potential evolution
application.

The simulation of the programmable circuit requibgs amount of computational power,
which is not easily accessible. This problem cansbled by the usage of distributed
system, which will distribute tasks to many ordjnacomputers, thus increasing
the available computational power. Chapter 4 dessrithe structure and functioning
of the developed system.

Chapter 5 presents the results of simulations pagdrusing the distributed system.
Chapter 6 contains conclusions drawn from the sinomaresults and summary

of the thesis achievements.

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

1.1. Project Goals

The goal of the project is to design the distridugystem for the circuit design using
the genetic algorithms. The system should give sscte the computational power enough
for genetic simulations with no additional costsl @t reasonable resources usage. Another
goal is to verify the hypothesis that the genetigoathms can be used effectively
to improve the fault-tolerance of the programmatiteuits by the design of special device

configuration.

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

2. Impact of Radiation on Programmable Circuits

2.1. Radiation and Matter Interaction

There are several types of radiation, where diffegarticles of different energies act.
The quantum mechanics laws and theories descrigitar beyond the topic of this thesis,
but at least brief explanation of terms used ldteoughout the chapter is essential.
Nowadays, particles are thought to consistqofrks (which come in 6 flavours: up
and down, charm and strange, top and bottom)lepidns. Quarks cannot be isolated;
they are confined in particles callbadrons and held together bgluons. Furthermore,
hadrons are divided intmesons(made of quark anti-quark pair) atédryons (made
of three quarks). Hadrons interact v&rong interactionand leptons viaphotons
The particles, which before 1970s were thought éoblsic ones like proton, neutron
and electron are accounted to the following groyp®ton and neutron are baryons,
electron is a lepton. Proton is build up from twp and one down quark and neutron
is build up from one up and two down quarks. Folt fist of quantum particles,
their properties and interactions between themsgleefer to [1].

Generally radiation interactions can be dividea itwo groups: ionising and non-ionising.
Charged hadrons and leptons, heavy ions and phatengnising particles, as they can
ionise an atom. Neutrons and neutral hadrons cammmse atom directly, therefore
are considered as non-ionising. However, neutrars indirectly ionise atoms through
the nuclear reactions. High-energy neutrons caiteegan atom, which then emits gamma
or x-ray radiation (photons with high energy). metparticle accelerator environment,
which is the potential destination of the faultet@int programmable device, the presence

of neutrons, electrons and gamma radiation is #s&clanger.

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

2.2. Radiation Effects in Silicon

Under normal conditions radiation effects are nbtaobig concern. However, even
at ground level, some space radiation particleshitasensitive elements and cause failure
of the system (in huge memory systems especiallyiey start to count seriously
or become even critical when it comes to some apegiplications like space, military,
avionics, nuclear power plants, High Energy Phy8itlSP). Nowadays silicon integrated
circuits are the most popular ones. They providedgspeed, are cheap in production,
but due to small elements size (for example gafethe transistors) and high packing
density of the elements they are sensitive to tadigeffects. Of course, one could argue
that vacuum tubes are immune to radiation, butirements like: circuit complexity,
weight of the circuit, limited power consumptiongohanical resistance cannot be met
by vacuum tube circuitry. In next few sections meadiation induced effects that occur

in silicon circuits are presented.

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

2.2.1. Cumulative Effects

Cumulative effects alter semiconductor devices peendy. There are two main
mechanisms accounted to the cumulative effects:
» Displacement damage

* lonisation damage

Displacement damage occurs when incident quansaftGtient energy hits semiconductor
material, transfers momentum to the material aterhich in turn changes its place
in the lattice. Such lattice defects have influeircehe properties of the semiconductor
material. They create so-called mid-gap stateschvitan result in generation of dark
current (when electron from valence band goeséoctinduction band via mid-gap state)
in reverse-biased pn-junctions (shot noise), oromdmnation of the electrons from
the conduction band with holes from valence bandfarward-biased pn-junctions
(reduction of signal or gain). When such mid-gagiesis situated close to the edge of one
of the bands, it can trap charge and releaseeit aftme time. Devices sensitive to this type
of damage are bipolar transistors, optocoupleis ogtical detectors.

Displacement damage does not depend on the tosalrlzdxl energy, but on the non-
ionising energy loss (NIEL), which refers to thesmand energy of the incident quanta.
So it is important to take into account what typel @&nergy of radiation particles is.
The table 2.1. shows a comparison of relative deghent damage for different types

of radiation [2]:

Table 2.1. Comparison of relative displacement daarfagdifferent types of radiation

Particle Proton Proton Neutron Electron Electron
Energy 1 GeV 50 MeV 1 MeV 1 MeV 1 GeV
Relative

1 2 2 0.01 0.1
damage

lonisation damage occurs due to liberation of chacgrriers from insulating layers
(for example SiQused widely in silicon circuits for insulation) lignisation mechanism.

These free carriers drift or diffuse to other Isyavhere they can be trapped and contribute

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

to parasitic fields. Freed electrons are much moabile than holes, thus the latter
are more probable to be trapped. Holes trappedidedayer contribute to positive charge
build-up; on the other hand holes trapped at thieosioxide interface may result
in electron trapping. For example, in NMOS tramsistholes produced by irradiation
in the gate oxide cumulate in the oxide and bupdpositive charge. Therefore, threshold
voltage decreases. However, this is true only at tadiation level, at higher level
the threshold voltage increases and can even pa&sggiation value. This is effect
of formation of negatively charged acceptor integfatraps. The change in PMOS
transistor is smaller than in NMOS transistor, positive charge trapped in the gate
and lateral oxide decrease the threshold voltageh Shanges of the device characteristics
can severely affect functioning of analogue ciguibecause operation points change,
but also of digital circuits, because switchingesrare affected.

lonisation damages are independent on the typeadiation, but rather on the total
absorbed ionising energy (Total lonising Dose —)TDypically the ionisation mechanism
is the main absorption mechanism (for gamma ramfiathadrons, electrons and ions),
therefore TID is usually expressed in terms oflteteergy absorbed per unit volume (1 rad
= 100 erg/g or 1 Gray = 100 rads). The same TIDseauonisation damages of different

scale in different materials; therefore, beside &léb absorbent material has to be stated.

10

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

2.2.2. Single Event Effects

Single Event Effects (SEEs) are result of hittirepstive circuit elements by a single
energetic radiation particle. Here we have to nmova statistical domain, since we cannot
say exactly when such effect occurs, but we cahgasmate probability of such event.
SEE can be divided into permanent effects and igahseffect. Permanent effects
are those, which permanently change the structuitbeodevice, so called “hard errors”
for example Single Event LatchUp (SEL) in CMOS ICshiekh turns on parasitic
transistors in the circuits what destroys poweediif power is not turned off fast enough.
Usually manufacturers care about latch up that eecur due to improper powering
sequence, but do not take into account effectsecalyy radiation. Permanent effects
similar to SEL occur also in power MOSFETs (Singeent Gate Rupture) and BJTs
and power diodes (Single Event Burnout).

Transient effects affect functioning of the deviaesy temporarily, therefore, they have
biggest impact on digital circuitry, and such effea analogue circuits can even pass
unnoticed. Examples of transient SEEs are SinglenEWpsets (SEUs), which change
contents of the memory and Single Event Transi€éBETS) that are transient changes
of the signals on the lines. When SEU changes mitthe register responsible
for the functioning of the whole device, it candaled Single Event Functional Interrupt
(SEFI).

The single high-energy ionising particle can lebedind an ionised path of electron-hole
pairs. When carriers are liberated in the depletiegion electric field puts them

in systematic motion and current spike occurs. fegul. illustrates the phenomenon.

ionising particle path

. depletion

4_

@ %, region

p-type @—’ n-type

— -0
|

Net current flov
Electric field

Figure 2.1. Mechanism of charge deposition in diémtelayer by high energy ionisii
particle

11

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

But the interaction of the ionising particle does and just on the surface of the silicon
device. It goes further and can deposit lot of ghan the bulk of device, which when

collected can contribute to even higher currentwfld'his phenomenon is so called
funnelling.

Current spike can produce flipped state on signal ive have SET — a small glitch on the
line, which can result in wrong output. But if suglitch occurs in memory cell, it can

change its contents.

1 ionising

/particle

Figure 2.2. Bit-flip mechanism in Static RAM cell

Figure 2.2. presents SRAM cell or just a latch affddy ionising particle. If such particle
changes state on any of the line (here we suppabamges state from 0 to 1), the contents
of the cell will be changed. In very sensitive @&, such single particle hit can even
cause Multiple Bit Upset (MBU). SEUs are so calledft'®rrors”, they do not impair the
physical structure of the device, therefore, can Heenoved by reprogramming
of the device. The rate at which SEUs occur depstrdsigly on the type of particles (type
of radiation), energy of the radiation particlegvide sensitivity and Linear Energy
Transfer (LET). Device sensitivity, in turn, depereh the Sensitive Volume (SV) because
not all elements of the device are sensitive ttclgiis on the lines and on the critical
energy (&) — energy needed to change a state of the ling@. isBhe energy that can
be transferred by given particle to the matter prated by the radiation on certain distance
and. LET is defined in (2.1).

LeT=9E (2.1)
dx

For example heavy ions are high LET particles aadtdns are low LET patrticles.
The probability of SEE is very hard to estimategcéaese not only heavy ions can deposit

energy bigger than critical energy. Hadrons thatrast able to deposit sufficient energy

12

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

in sensitive volume can by nuclear interaction predheavy ions and thus deposit energy

bigger than E;:.
2.3. Mitigation Techniques

Mitigation in case of effects connected with cuniviaeffects can be done on the physical
structure level. As we can imagine, the numberaofiers liberated in the insulation layer
depends strongly on the thickness of this layeeréfore, in order to minimise the effect
of ionisation damage or displacement damage, wee hi@v reduce the thickness

of the insulating layer, what in practice means tie device produced in smaller gate
length technology. Not only the thickness of théegaxide is the problem, but also oxide
insulating two adjacent transistors in the IC Idfiexide (which is usually much thicker

than gate oxide and unfortunately does not scalendwith gate length) has to be taken
into account. Trapping of the charges at the ositieen interface can lead to leakage
current (holes trapped in the field oxide-silicamerface can create inversion layer)
between two transistors what produces increasecpoansumption and can lead to IC
malfunction. Thick oxide near source and drain edgan be a problem. Parasitic
transistors can be created there, because wholeedsvcovered with thick oxide layer

(except the area under the gate). The figure bekplains the problem.

_A_L
T | drain
—>

gate

source

W leakage path

Figure 2.3. Parasitic leakage paths in MOS trarwist

The solution to those two problems is device gumydiThis is technology-hardening

method. The idea is explained in the figure 2.4.

13

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

|_—" source

Guardring | gate

p+ dope!

—— drain

Figure 2.4. Guard ring and gate surrounding the 1seu

The gate totally encloses source, so parasitisistors do not create because gate oxide
is thin enough to restrict or even eliminate curtivéaradiation effects. Heavily doped
p+ guard ring cuts the leakage current betweeratilyacent devices, because holes trapped
at the oxide-silicon interface will not be ablecteate inversion layer.

Unfortunately every solution has its drawbacks.sTholution increases size of the IC
elements, what in turn results in decreased cirepiged, worsens packing density
and increases power consumption.

It is also worth mentioning, that cumulative efieof radiation can be removed by device

annealing.

The technology goes forward very quickly, the desi@are scaled down what reduces
consumed power, increases switching speed andasesenumber of devices per area unit.
When scaling down)M is decreased and capacitance of the individuatds\wdecreases,
thus critical energy is also smaller. But we haveeimember, that sensitive volume also
decreases due to smaller feature size. In DRAM d¢k#scell area scaling seems more
important than decrease of capacitance, and ther&®AM sensitivity decreases when
scaling down. For SRAM answer is not so clear, énse that both phenomena cancel each
other [4], but experimental results show, thatlerates increase with scaling [5].

There are different ways to eliminate or limit SEE®e of the approaches is to change
physical structure of the device to make SEE lesbable. It is so called “hardware

hardening”. One of the ideas is Dual Interlocked IGBICE) structure [6], which adds

14

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

some redundancy to the circuit. The latch in thigcture requires voltage change on two
nodes in order to change the information stored oell. But technology is successively
scaled down and it becomes probable, that one imgpion can produce MBU and cause
bit flip in the DICE cell. The Triple Interlocked AQE(TICE) is under investigation
and should be much more immune to SEUs. Other ititevel idea of hardening
the device is resistor-decoupling technique, whesstor is put in series with each
inverter gate. The resistor, together with invegate capacitance, forms RC low-pass
filtering circuit. This filtering circuit can filte out high frequency components and thus
eliminate current spike at signal line. But agaialisg down of a feature size becomes
a problem. With smaller gate length, the capacéaoicthe gate decreases and to keep
filtering circuit cut-off frequency at desired ldyee have to increase the resistance. With
large resistance values (order of2Mn technology 0.2%um [6]) the technological aspect
starts to play significant role. Resistors that gaovide such resistance are strongly
thermally dependent and can change cell charattsrisonsiderably over operating
temperature interval. The solution to this issuadslitional capacitor inserted in parallel

to the signal line. This leads to reduction of tbguired resistance.

MbreakP MEraakP

— i3 P =

Rz
l—ot@ '
ol 1Rbraak

L IM—I M2 |
TMW&EKN MbreakM
<

Figure 2.5. RC radiation hardened SRAM memory &l [

Above presented methods are used for “hardwaresharg’ of SRAM cells, so volatile
memory cells. In case of non-volatile memoriese IKFROMS, EEPROMS and FLASH

memories other methods have to be used. Usually sugmories are built using floating

15

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

gates. Floating gate is similar to the normal tistng, but it has two gates (selection gate

and floating gate). The structure is shown in feg2re.

Selection gate

Floating gate

Figure 2.6. Floating gate transistor structure

The floating gate is isolated from the substratthhin tunnel oxide g < 100 A). When
high voltage is applied (about 20 V) between Sowand Selection gate — Drain, high
electric field is created, which causes avalandieciion of the electrons to the floating
gate, where they get trapped. Accumulation of tharge in the floating gate changes
the threshold voltage of the device towards théhdrgvoltages. This process is self-
limiting, the charge build-up in the floating gagffectively lowers the electric field and
stops avalanche injection. The state of the defgtaered information) is checked using
Selection Gate. The low voltage (just enough torocwme the threshold voltage of non-
programmed device) is applied to the Selection Gétthe floating gate does not hold
accumulated charge — the inversion layer is createticurrent can flow between source
and drain (device stores “07), but if it holds soof@rge, inversion layer cannot be formed
and there is no conduction path between sourcedaaiti (device stores “1”). Silicon
dioxide isolates floating gate from any conductipgrts of the circuit and once
programmed, device can hold information for decadesxause leakage of the charge
is very, very small. In EPROM data can be erasedstogng UV irradiation (what
generates some electron-hole pairs) in the oxidealaws charge to leak from the floating
gate. UV erasure is very slow; therefore EEPROM mwider use. In EEPROM tunnelling
mechanism is reversible by high negative voltage.

Memories built using floating gates differ from thelatile memories mentioned earlier

and have different radiation sensitivity. Experinamata proves that TID effects are main

16

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

reasons of data loss in floating gate devicesTg ionising damage puts some variation
on threshold voltage of the devices, moreover, ah @damage the tunnelling oxide
and cause charge leakage. But not all experimeasailts can be justified by cumulative
radiation effects. Heavy ion can discharge thetithgagate devices [8]. The solution to this
problem is the Silicon-Oxide-Nitride-Oxide-Silicd8ONOS) device. The technology has
been developed by Northrop Grumman Corporation (NG®@jch is involved in space

applications of non-volatile memories for over 3@aks. The structure of such device

is shown in the figure 2.7.

+1C -10V

40A Capping

Oxide 150A
Oxynitride

40A Capping

150A Oxide

Oxynitride

16A Tunnel
16A Tunnel

Oxide Oxide
+ 10 volt programming resu - 10 volt programming resul
in trapped electrons in in trapped holes
SONOS dielectric stack in SONOS dielectric stack

Figure 2.7. SONOS transistor stack [8]

These are stacked transistors. First there is 15 thermal oxide, than 150 A of silicon
nitride, 40 A of blocking oxide and phosphorous-edpolysilicon gate. Positive voltage
of 10 V applied to the gate results in electrompped in nitride layer, negative voltage
results in holes accumulation. The charge is storéhps in silicon nitride layer, therefore
it cannot be removed as easy as in case of condugiblysilicon floating gate.
The retention of the data depends on the widthrofiiamming pulse, but is between 10
to 100 years! The number of reprogramming cyclesisnated to be 100,000 times.

We have to keep in mind, that while such methods tee hardware level) are very
effective and do not require changes on the hidgwazls, they are also very expensive.
The radiation-hardened devices are not widely usieely are suitable only for certain
applications, therefore are produced in small senéhat increases the price. Moreover

research and development of such circuits requira@sy expensive tests and experiments

17

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

may require change of the technology in the silibtmmndry. Sometimes, when we deal
with environment in which radiation effects are sotsevere and often, it is better to use
commercial ICs, but use radiation hardening on thetemn design level (“software
hardening”).

Obvious hardening method implemented at systemgdestage is data duplication.
Of course, we can use two separate places to stersame data; everything is fine until
no data difference occurs. When data from one géors different than from the second
one, we have to decide somehow, which is the taleev We have implement at least
some error detecting coding scheme. This approashite drawbacks: double memory
needed to store data, slow memory access due fagidecoding and double copying.
But if we have to implement at least error detectiading, maybe we could sacrifice some
speed, but use only one storage place to storevddteError Detection And Correction
(EDAC).

Coding schemes which allow error detection or d&tectind correction need some
redundancy. We have to add some bits to the infoomato facilitate detection
and correction. Some memory ICs have even dedidaB&IC circuitry, but due to costs
this is not true in commercial ones. In such a cagehave to implement EDAC entirely
in software. Of course the problem is that usuedige and data is stored in SRAM and
therefore is sensitive to SEEs. When error ocauidata, this is not a problem, the EDAC
would correct the single error, but error in coda dead to IC malfunction. The code
memory segment can be also protected with somendash bits, but if error occurs
in the instruction that is going to be executede tmpredictable behaviour can be
the result. Coming back to the protecting codingesods. There are two type of coding
schemes: systematic (separable) and non-syste(natieseparable). Separable codes keep
protected data intact, but add some check bits.-$é¢@arable codes mix check bits with
data bits. In our case it seems reasonable toyssensatic coding to keep data in memory
as is, but keep some additional data to be aldetict and correct errors.

One of the most popular and simple coding scherparisy checking. This code adds one
bit to the information and is able to detect odanbar of errors, but cannot correct any
errors. Usually even parity is used. It means tasira bit keeps number of “1"s
in the protected information always even. Suppdse, 8-bit information is protected.

Table 2.2. presents the idea of even parity chegckin

18

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Table 2.2. Even parity checking can find only odchber of errors

No of | Parity | Check
“1"s bit result

Bit 7 |Bit6 |Bit5 |Bit4 |Bit 3 |Bit2 |Bit1 | Bit0

Noerror | O 1 1 0 1 1 0 1 5 1 OK
1 error 0 1 1 1 1 1 0 1 6 1 Error
2errors | O 1 1 1 1 1 1 1 7 1 OK
3errors | 1 1 1 1 1 1 1 1 8 1 Error

As we can see parity checking is not very suitablease of SRAM protection against
errors resulting from SEEs. It only detects errbrg, cannot correct any, what could only
help in case of doubled memory storage. Method lsanmodified to enable error
correction. Data is stored in the memory usuallg-bit addressable cells. Apart from one
extra parity bit for each cell as horizontal protme, one cell is devoted to vertical
protection. Table 2.3. presents 3 memory cellsegotet with 8 vertical and 3 horizontal

parity bits and Table 2.4. same memory with sirmgter.

Table 2.3. Three memory cells protected with verdoa horizontal parity

Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Horizontal

Address o
7,6 |5]4|3|2|1]| 0| Parity bit

Oxo000 | 1| O O} 2 1] 1, 0O O 0

Ox0001 |1 0| 1| O

Ox0002 | 1| 1| 1| 1| O 0

Vertical

_ /1,105 0] O 2 2 O

Parity Bit

Table 2.4. Three memory cells protected with veraoa horizontal parity with one error

Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Horizontal
Address o
7,6 |5]4|3|2|1]| 0| Parity bit
oOxoo00 |10 0|2|2|1]0] O 0
Oxoo01 | 1(0}j21|1|1(0|1]|0 0
Ox0002 |1 (11|10 0] 0] O 0
Vertical
|1} 1j0{0/0112|1]|O0
Parity Bit

19

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Single error position can be precisely determined &orrected. More errors can
be corrected, but only when no two errors occurulBmeously in the same row
or column. In such a case, only odd number of srcan be detected in the row or column.
It has to be kept in mind, that every protectionthmd adds significant overhead
to the read/write operations and needs some additmemory. In this case, every 8 bytes
of protected memory require 10 bytes of storagbyté for horizontal parity bits, 1 byte
for vertical parity bits. Of course vertical paribyte does not have to be inserted after
every 8 bytes of memory, it can be put more oftetless often. This strongly depends
on the probability of double errors in one row oluenn in smallest cross-protected area.
Another frequently used protection code is Hamninge. Is also based on additional
parity bits, but it allows to correct single errr detect up to two errors, but not both
simultaneously. The number of required additionts is determined by “Hamming rule”:
2">m+d+1 (2.2)
Where d is the number of data bits to protect and the number of parity bits. A code,
which is constructed in such a way, that equalign scan be used in (2.2) is called
a perfect code. Codes are denoted as (m+d, d) Hayroudtes.
Suppose, the (7,4) Hamming code is constructedieTére 4 data bits and 3 parity (check)
bits in this code, which can indicate 7 positiohsu error, position 000 indicates no error.
In such a code parity bits are also protected. e&fléhb. shows positions of errors
and corresponding parity bits values.

Table 2.5. (7,4) Perfect Hamming code parity békigs
Position Bit 2 Bit 1 Bit 0
1 0 0 1

N o g A w| N
R k| Rk Rl O o
R k| o o r| Kk
R o »r| o r|l o

Bit O is responsible for parity check on position815, 7. Bit 1 on positions 2, 3, 6, 7. Bit

2 on positions 4, 5, 6, 7. The rule is that codeukh be constructed in such a way, that

20

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

no parity bit checks the other parity bit. This ca@ achieved by placing parity bits
on positions 1, 2, 4, since these positions conbaily one “1” in binary representation
and are checked only once. Parity bits are detednéaxactly in the same way, as in even
parity coding, for example 1 Parity bit is O sino#s on positions 3, 5, 7 are 1, 0, 1
(two “1"s in total). As an example consider theldaling data: 1011. The resulting

Hamming code looks as in Table 2.6.

Table 2.6. Hamming code for 1011 data

Position 1 2 3 4 5 6 7
Function | ParityO | Parityl | Data3 | Parity2 | Data?2 Data 1 Data O
0 1 1 0 0 1 1

Decoding is a matrix multiplication of matrix comtang possible combinations of parity
bits and received data. Modulo 2 arithmetic habdaaised to calculate the multiplication.
In this case:

0001111
0110011
1010101

(2.2)

P P OORrR FrP O
I
o o o

What indicates that there is no error (error positd00). The erroneous data 0010011

would give:

0001111
0110011
1010101

(2.3)

R P O O FLr O O
I
o +—» O

what indicates error on position 010 = 2. The maidm of error detection and correction
by Hamming code is based on Hamming distance. Hamulistance is the number of bits

at which two code words are different and Hamminte rensures that that distance

21

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

between any two valid code words is at least 3rdfbee, to change from one valid code
word, to another code word, at least 3 bits haveh@ange. When only one bit changes,
it is possible to decide which was the correctdsalode word and correct the error,
because this is the only one with Hamming distasfc& from the code word read with

error. When two bits change, it is only possibledtect that double error occurred,
because read code word is not valid. Unfortunatetpr cannot be corrected since
it is close (Hamming distance = 1) to another vala@e word. That is why perfect

Hamming code is able to correct single error arteéaalouble error, but cannot do both
functions simultaneously. Of course, code with biggamming distance between any two
valid code words can be selected. For example ¢6@ is able to correct single error
and detect double error simultaneously (minimum khkamg distance is 4). One could say
that Hamming code is non-separable code and is toardplement in hardware. But we

can make it separable by moving parity bits toehd of the data. Implementation is also
simple. XORing appropriate bits can do the coding. &le bits on positions 3, 5, 7
in the above considerations were 1, 0, 1. Therd?ardy bit O is:

P, =b,0b,0Ob, =10001=0 (2.4)

Decoding is also straightforward. First the erroosipon has to be determined.
For example for received data r = [0010011]:
g=r0r,0rg0r,=0010001=0
e=r,0r,0r,0r,=0010101=1 (2.5)
e=r,0r,Urg,0r,=0000101=0

If the position of error is different than 000, thie has to be flipped.

There are other simple and more sophisticated godiochemes [9], which could
be employed for memory protection against SEE iaduerrors, but there is no point
in describing them here.

Until now, the memory protection technigues werentim@ed, but systems as a whole are
also subject to SEEs. For example SETs can chamgeitoof a device for a short time.
It is not important, whether it is combinatoriatatiit or sequential circuit; it produces bad
output for a while. This can lead to malfunctionather connected systems. One of the
techniques, which alleviate this problem, is votoigcuit. This technique has been used

for many years in electronic devices working incgalhe idea is simple. There are three

22

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

modules, which perform the same function and arejesti to SEEsS. Their outputs
are connected to the inputs of voting circuit. Wot of them have the same output
and the third has different or all of the threednive same outputs, the output of the voting
circuit is set to the value that is present on rggority of inputs of the voting circuit.
The figure 2.8. presents example of voting cirgujplementation.

a

=T

b

_

output

Figure 2.8. Voting circuit implementation

When implemented in programmable circuit, whichresoits configuration in memory
insensitive to radiation or built from the discretéements the voting circuit is only
a subject to SET. However, it is very simple andlsmand probability of SET is usually
small. Of course, when voting circuit is implemehtia the programmable circuit, which

stores its configuration in memory sensitive toiaddn, voting circuit also becomes
a subject to SEUs.

23

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

2.4. Programmable Circuits

Mass-produced Integrated Circuits (ICs) are usuahatively cheap, fast and widely
available, moreover the selection of IC types andufacturers is so big, that many
projects can be realised using only “stock” ICs. Butome cases an Application Specific
Integrated Circuit (ASIC) is needed because of ptojequirements, which can be
for example device size, speed or power consumpkionvever, because of low quantity
production ASIC manufacture process is usually lamg expensive. Therefore, many
prototypes and even many final products are busingi programmable circuits.
Most of the combinatorial or sequential circuitsnche realised using these Field-
Programmable Devices (FPDs). They are producedrgelquantities, what decreases the
unit cost, but are flexible and can be programmedealise user defined functions,
what in turn lowers the start-up cost and the famarrisk of the project.

Taking into account the complexity of those cirsputhey can be divided into three groups:
Simple Programmable Logic Devices (SPLDs), ComplesgRammable Logic Devices
(CPLDs) and Field-Programmable Gate Arrays (FPGAS).

SPLDs

SPLDs are usually devices with programmable ANDarrfollowed by fixed

or programmable OR array. Programmable Logic ArrdyLA) devices have
programmable AND and OR arrays, but this introdusigmificant propagation delays
and the need for fast programmable circuits ledPtogrammable Array Logic (PAL)
devices developed by Advanced Micro Devices. In BPAdnly AND array can
be programmed and OR array is fixed. Architectufesrogrammable devices vary from
vendor to vendor what is reflected in vendor-spedlevice names, like Generic Array
Logic (GAL — Lattice Semiconductors trademark) whis a variation of PAL architecture
with some additional features. GAL device is ddsauli later as an example. Array outputs
can be registered to facilitate sequential circuiisictions. Figure 2.9. presents
the simplified structure of PAL device. In the frgu the short notation for AND matrix
connections is used. Horizontal lines do not regarea single connection to the AND gate,
but connections to all vertical lines that crossnth Moreover, usually there are more than
4 inputs and 2 outputs. Different configurations BRL devices are available.

The configuration of the device can be identifigdtive device hame. For example 16R8

24

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

indicates maximum of 16 inputs and maximum of 8patd. The letter “R” means that
the outputs are registered, other commonly uséer [8¢” means “versatile” and indicates

that the outputs can be configured in various ways.

Inputs Programmabl Fixed OR
BiRteN
mun il
=S/
mann il
S/

Figure 2.9. Simplified PAL structure

Good example of PAL device is GAL16V8 from Latti&emiconductors, which is used
in simulations throughout this thesis. Its funcéibblock diagram is shown in the figure
2.10.

The Output Logic Macro Cell (OLMC) is the generic ttea of this device, making

it different from the standard PAL structure. TheMICs can be configured with 2 global
and 16 individual configuration bits into three ogg@n modes: simple, complex and
registered. The figure 2.11. shows internal OLMQdtire in registered configuration
for registered mode. In this mode all macrocellarahicommon clock (CLK) and output
enable (OE) control pins, any of the macrocells banconfigured as registered output
or input/output. XOR controls the polarity of thetput. The output can be fed back
to the AND matrix. In other modes register or femtibcan be disabled. The configuration
of the device is kept in the EEPROM memory, thus itmmune to SEUs. For further

information, please refer to [10].

25

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

oL —L-
CLE

i) ou.n::..g_l o

| —t T —
‘8 |:-Lr.1|c:3 ([elw}

! [T
E "5 ou.mq ([aliw

! ﬂ - -
= % o~ 75| oLME %—— 1oia

| — i =™ |

q ql x [1
XA g 75 |OLMC %— 1F0ia

| —i=] g E“—’ =
E 8 |oLME %—— ([wllw}

! [T
Tg |OLMC .3;"1_— ([allw

! [T
Tg |oLMG .3;"1_— 1oia

| — T

= \/TE

Figure 2.10. GAL16V8 Functional block diagram [10]

CLK

Y

EY

OE

Figure 2.11. OLMC structure in registered configuoatfor registered mode [10]
CPLDs

CPLDs are the next step in programmable circuitdutiom. SPLDs capacity cannot be

easily increased because the programmable matiaes too much silicon area when

26

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

number of inputs and outputs is increased. Thezef@PLDs are based on many
SPLD-like blocks connected together to increasethgrammable circuit resources.

The good example of CPLD is Altera MAX 3000 familshese devices contain from 32
to 512 macrocells. The device structure is showthenfigure 2.12.

INPUT/GCLK1 =

INPUT/OE2/GCLK2
INPUT/OE1 =
»—gj
INPUT/GCLRn =
6 or 10 Output Enables (1) pAA 6 or 10 Output Enables (1)
¥ VvV VY S
LAB A LABB
= | o | S
/O 16 Macrocells 36 36 Macrocells 16 I{e]
21016 1/0 : Contro| |~ 1to 16 L 7> 17 to 32 ql—bControl : 21016 I/0
L] Block Block .
S 16 16 —<
S = <+ <
L1 L1
i [
{60r10 #u 210 16 2016 ¢“ ieomo
LABC PIA LAB D
=, 2to 2to ==
E.E_ ITe) 16 Macrocells | | 36 36__ Macrocells 16 Cl/Ci I_E.E
Contro| |y 331048 -7 7 49 to 64 il | CONEro
210161/0 o Bolgcrl? Block H 2to 16 I/O
S 16 —
S . i < . =
{GOHO ### 2t0 16 21016 ### ‘eomo
L] *
L] L]
L] L]
L

Figure 2.12. Altera MAX3000A device block diagralt][

16 macrocells form a Logic Array Block (LAB). LABs arenterconnected
via Programmable Interconnect Array (PIA). PIA sdfby I/O pins, input pins and
macrocells. The macrocell structure is shown infifpere 2.13. Each macrocell is similar
to the PAL device. The Product Term Select MatAND matrix) is programmable and
product terms are directed to the OR and XOR gatis. ddrt realises combinatorial logic
functions. Register at the output of the macrocai be used for sequential circuits. Two
types of logic expanders are present in the malisoddne Shared Logic Expanders enable
inverted product terms to be fed back into thedagiray. The Parallel Logic Expanders
enable product terms from adjacent macrocell tbdreowed.

27

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Global Global
LAB Local Array Clear Clocks
2
I—.j Parallel Logic
. Expanders
L4 (from other ggaggjgg;rgmabl‘e
D_l macrocells)
i Register
Bypass
)_ Do To /O
,-> Control
D— Block
[]
®
Product- | e
Term
) Select Select
Matrix
Clear
Select
L/
>
N <_
"|'\. bl %\" lﬁ"'% 1 Shared Logic ToPIA
Expanders
36 Signals 16 Expander
from PIA Product Terms

Figure 2.13. Altera MAX 3000A macrocell structud |
The configuration of the device is kept in EEPROMmmey and the device is In-System
Programmable (ISP), what means, that it does ne¢ ha be programmed in separate
programming device, but its configuration can banged in the target system. For further
information, please refer to [11].
The Altera MAX programmable logic devices familyasly one of many available on the
market. Each vendor uses different device architecttherefore the device type

and vendor must be selected carefully, with aljgoorequirements in mind.

FPGAs

Because some projects require more resources (rates gr registers) than CPLDs offer,
the next group has been developed. The FPGA stauigwnot an extension of the CPLD
architecture, but employs different approach. Therao longer product term selection
matrix, but the combinatorial functions are realisesing Look-Up Tables (LUTS).

The typical FPGA structure is shown in the figurg42

The Programmable Logic Blocks (PLBs) are intercorggectsing Programmable

Interconnect. I/O Blocks control the pin functions.

28

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

— — Configurable
] B Logic Block
— | Programmabl
// || interconnect
/A
— | /O
Block

Figure 2.14. Typical FPGA structure[12]

It is good to describe the details of architecusang some exemplary programmable logic
device. The good example is Xilinx XC4000 FPGA famiThe figure 2.15. shows
the structure of Xilinx XC4000 Configurable Logic Blo¢CLB).

4

e [[|
H1 D|N/H2 SR/Hg EC
Gq — L SIR Bypass
1 CONTROL |+
Gy —] LOGIC E.‘N sD v
FUNCTION & . & D Q
OF v

Gy —] G1-G4 E [:
G4 — b

LogIC \ ec

L FUN((),;’\ON ‘Fié r) RD

Fa, M y ‘ ; S

AND

H1 ¥
Fq — i B

SR ypass
™~ CONTROL [
F3 — LOGIC E-‘N sD xa
FUNCTION & I o D Q
OF . H
F2 — F1-F4 L
Fy — 1
EC
« RD
(CLOCK) 1 S—
o
;B X

Multiplexer Controlled
by Configuration Program
Y 9 J X6692

Figure 2.15. Block diagram of Xilinx XC4000 CLB [13]

29

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

The three logic function generators, built using TiSlJ are provided. The G and F
generators have 4 inputs, the third generator @4 three inputs. The inputs of the H
generator can be the outputs of G and F generatoiaputs from outside the CLB.
The sequential circuits are realised using two ip-flops. The flip-flops can be fed by
the logic function generators outputs or externgha. Moreover, combinatorial logic
and the storage elements can be used independbettpuse there are separate, non
registered outputs available (X, Y) for combinabriogic. The LUTs used for logic
function generators are simply the 16x1 bit SRAM ragmareas. The inputs are address
lines of the memory and the stored value is a fanctvalue. In this family
of programmable logic devices, the function gemegatan be used also as high speed
RAM, the single CLB can be configured as 16x1, 16x232x1 bit array. LUT usage
in logic function generators makes the propagatiare independent on the function
implemented.

Figure 2.16. shows the 1/O block structure.

Passive
e A
‘ Pull-Down | ——

D Q

Output

— CE Buffer .

Latch

|
|
1
|
Clock _!
Enable | CE <T
|
1
Input |
Clock |

e |
l - Flip- Input —
| > Flop/ Buffer %
| td
~

X6704

Figure 2.16. 1/0 Block structure [13]

The 1/0 blocks are interfaces between external adeyiackage pins and the internal

connections. Each pin has its dedicated 1/O bldtie b and b inputs can be connected

30

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

to the pad directly (via the buffer) or through élip-flop, which can also be configured
as latch. The Out output can also be connectedctlyireco the pad (via the buffer)
or through the D flip-flop. The input and outpubrstge elements have common Clock
Enable signal (CE), but use different clock sign@lge output signal can be inverted in the
I/O Block. The output buffer can be configured ine thhigh-impedance state
(using T signal).

The last detail of Xilinx XC4000 family architecturéghat needs explanation
is the programmable connection between CLBs. Thes&ea$e use hierarchical wiring
structure. Namely, each CLB is connected to thetfipes of interconnects: length-1 lines,
length-2 lines, length-4 lines, length-8 lines gomh XC4000X) and long lines. This
feature simplifies the routing procedure done by dlesign software and enables better
device resources usage. The wire segments aredpteccezontally and vertically around
the CLB. The cross points of vertical and horizomiaing lines are called Programmable
Switch Matrices (PSMs). The figure 2.17. shows lengnd double-length lines
in the device and figure 2.18. shows internal stnecof PSM.

CLB ‘ CLB ‘ \ CLB
IR \ T Doubles
= PSM | i PsM & Singles
o X R RIS tEl Doubles

CLB CLB CLB
B | RN NS S .
= PpsM i psm &

T X T
CLB CLB ‘ [CLB

XE601

Figure 2.17. Single and double-length lines [13]

31

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

00\} %\‘:‘Q’ Q°
L A w I\
I__________“_/\((|
Double ! - e
(— 1 |
1 L t W
| . i
Singles < : i ¢ i
1]
; * : Six Pass Transistors
C L i | Per Switch Matrix
Double —' 4 ! Interconnect Point
[l Sl I R O A S S |

X6600

Figure 2.18. Programmable Switch Matrix
Additional wiring is placed in the outer devicegiformed by I/O blocks routing.
The configuration of the Xilinx XC4000 family devieas stored in SRAM and therefore
is a subject to SEUs. Xilinx XC4000s are mature pobsl there are much more powerful
devices nowadays, but the family has been chosem &xample because of its relatively
simple inner structure. For example Xilinx’s Virtdxtamily of the FPGA devices belongs
to the one of the most powerful on the market. fembers of that family have many
additional features beyond the programmable lofitese are: PowerPC 405 processor
core available (PowerPC is an IBM trademark), anrfate for user coprocessor,
622 Mb/s to 10 Gb/s serial transceivers, Digitajrnal Processing slices (which can act
as a simple DSP processors). The programmable isgltased on Advanced Silicon
Modular Blocks (ASMBLS). For further information pkearefer to [14].

Radiation influence on the programmable circuits

In order to describe the influence of the radiation the programmable circuits,
it is advisable to describe the user-programmaitcls technologies. The programmable
switches are the key elements that enable diffetewite configuration options.

EPROM or EEPROM based devices use structure presenteel figure 2.19.

32

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

vdd

Floating
gate
transistor

Figure 2.19. EPROM programmable switches realisiftpXunction

These switches are build using floating gates. Wthen gate is charged (stores “17)
the input signal cannot change the state of produre (the conducting path to ground
cannot be formed). Therefore, only signals linesiem switch stores “0” contribute
to the product. The arrangement shown above wiertars put on the inputs realises
AND function if two floating gates are unprogramnistbre “0").

SRAM based switches are simply pass-transistors gattes controlled by appropriate
SRAM bits. The pass transistors are used in PSNM@srsin the figure 2.18.

FPGA circuits employ also another programming tetbgy — antifuse technology.
This is one time programmable switch, which is duising CMOS antifuses. Antifuse
is a device, that functions in an opposite way thhe fuse does. It is composed
of and insulating layer sandwiched between two ootidg layers. Antifuse is initially
non-conducting, because conducting layers are atguhby the insulator. When current
is passed through the antifuse (~5mA), the insujalayer melts and the conducting path
is created. Figure 2.20. shows two commonly uséitlae technologies.

33

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Amorphous Si

Dielectric

Polysilicon

Metal 1

Field oxide Diffusion
a) b)

Figure 2.20. Antifuse technologies: a)ONO antifusarborphous antifuse [15]

The Actel’'s antifuse uses Oxygene-Nitrogen-Oxyg@ERO) dielectric layer put between
polysilicon and f diffusion layers. Quicklogic’s antifuse employs apiwous silicon

between two metallization layers.

Above considerations lead to the conclusion thatothly switches that are subject to SEUs
are SRAM based switches. Therefore SPLDs and CPLDhsy USEPROM memory
are only subject to SETs. FPGAs using SRAM for dewonfiguration are a subject
to SETs and SEUs. SEUs can affect interconnecti@tseen CLBs and LUTs as well.
There are FPGAs using antifuse technology for amenections programming, but this
still does not alleviate problem of LUTs stored 3RAM. All devices are subject

to cumulative radiation effects.

34

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

3. Application of Genetic Algorithms in Fault-Tolerant

Circuit Design

As described in chapter 2 techniques mitigating the#luence of radiation
on the programmable circuits are implemented &t mdint levels of circuit design process.
The technique proposed below is implemented on dygem design level. System
is to be designed in a way, which minimises nega#ffects of bit flips in configuration
data of programmable circuit. The ideal “radiattoferant” configuration would provide
proper device functioning with any of its bits fied. Due to complexity of this task, only
single error tolerance is assumed. Length of prograble circuits configurations depend
on the type of the designed system and type ofetadgvice. Simplest configurations
realizing simple combinatorial circuits in GALs lavengths of hundreds of bits.
This gives enormous solution space, which cannasdagched in reasonable time using
“check all” method. Search has to be directed sawetowards right solution. Genetic

Algorithms (GAs) can be helpful in this case.

35

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

3.1. Genetic Algorithms

3.1.1. Idea of GAs

There are problems, where solution is containethige search space. This is the case,
when there are many parameters that have to beispt simultaneously to find the right
combination. Solution space size depends on thebaurof parameters and possible
parameter values. Optimisation problems may beesblysing analytical or numerical
methods. However, former approach is applicablg tmthe class of problems, which can
be described as analytical function. Usually rdal-problems are complex and are
difficult or impossible to describe analytically carcan be solved only numerically,
by searching in solution space. When the numbgroskible solutions is not too large,
we can check all possible combinations and chdosdést one. This approach is always
successful, it always gives the best solution, mrother words global extremum
of the function. But application of this algorithm limited by the computational power
of the computer used for program execution. Randearcking could be employed,
but this approach requires also much of CPU povwesralise the longer the algorithm runs,
the better final solution we get. Moreover, thelgyaf the final solution depends on luck
and does not guarantee that satisfying solutiohewviér be found. In cases of huge search
space some Artificial Intelligence (Al) should leenployed to direct search toward
the places in the space with better solutions. Gewdgorithms employ some sort of Al
for the solving process, it is a compilation of dam and intelligent search. These are
stochastic algorithms, where search process warkgady to the processes that are

responsible for evolution: inheritance and nataedction.

As an example, consider population of mice. Theeefast, smart, slow and silly among
them. Faster and smarter mice usually escape fhencat. Therefore, after some time,
population of mice has majority of smart and fasttause other died. Of course some silly
and slow mice also survive, because they are simpbky. This population
has an offspring. Next generation inherits geneti@aterial from the parents
and the children abilities are the mixture of fashart, slow and silly mice abilities. Mice
become on average faster and smarter in every tewolstep. Additionally nature

introduces mutation of genes during reproductiohatwresults in mice with abilities,

36

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

which were not present earlier in the populatiowol&tion in natural environment goes
very slowly, because individuals from one generatiteed some time to be ready
to contribute to the next generation and it is hrdnotice any improvements in our
surrounding. In computer memory individuals maydygresented by binary chromosomes.
These chromosomes may exchange information or gadautation. In this virtual world
it is possible to speed up the process and usaitemolto find problem solution. GAs

description uses some terms straight from natwaétics [16].

GA processes the population ioflividuals. Each of them is simply one of the possible
solutions. Each individual is judged on the basisfitness function value, which

is the measure of goodness of the solution. Thedg function is constructed accordingly
to the problem to be solved, it descrils/ironment in which individuals are placed.
The abilities, or in other words attributes of gverdividual are coded in itgenotype
which in turn consists ofcthromosome or chromosomes. A chromosome consists
of the elementary genetic units callgenes Values possible to represent by each gene are
called alleles. Algorithm proceeds in iterations, creating new gaten each time.
Figure 3.1. presents basic GA loop.

37

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

START

Initialization

v

Evaluation L

Is solution

satisfactory
?

Reproduction

Succession

\ Genetic

Operations

Figure 3.1. General Genetic Algorithm schematic

Initialisation step involves creation of initial population ofdimiduals. This is done
by picking chromosomes at random. Each gene in eladimosome is selected at random
from the alleles of the gene. For the binary chreomoe alleles of the gene are “0”
and “1".

Evaluation step involves calculation of fithess function waldior each individual.
After this step algorithm checks if best individdialfils the solution requirements, if not,
program goes on.

Reproduction step involves selection of individuals, which sldboontribute to the next
generation. The intermediate generation is cre@ebkction can be done in variety ways,
but should take into account value of fithess fiomcof the individuals. In classic genetic
algorithm, so called “Goldberg algorithm”, roulettéheel selection mechanism is used,
where each individual occupies space on the wheepaogptional to its fitness.
The probability of selecting the individual to tirdermediate generation is proportional
to the space occupied by the individual on the WwHeguation (3.1) presents probability p
of selecting vfrom pop_size of population members.

5 = fitw) 3.1)

i pop_size

> fit(v,)

38

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Therefore, best individuals usually place more tharme copy in the intermediate
population and worse have small chance to place @his is similar to the natural
selection.

Genetic Operationsstep involves crossing-over and mutation. Crosswgy- is genetic
operator that usually creates two children from paoents, but there are different crossing
operators and algorithm designer can invent news.oifibe simplest one is one point

crossing-over as presented in the Figure 3.2.

Parents Children
1010010100/’1/"1 11010001010 1010010100111 | 110101010111
NS
1011110100?10 11010101011 1011110100110 | 110100010101

Figure 3.2. One point cross-over operation

The crossover position is picked at random, chramas are broken at this position
and parts are swapped. One could think of two-paiossover, where there are two cross
positions chosen randomly and parts between thesgiqms are swapped or uniform
crossover, where every gene in the child chromossrteken from one or the other parent
or even more complicated ones. Some exemplary @ressoperators are described
in section 3.1.4.

Next genetic operator is mutation. Mutation changesmdomly chosen genes
in the chromosome to other values chosen from plessilleles. In case of binary
chromosome, this is simply a bit flip in the chr@ome. It is worth mentioning that
crossing-over does not necessarily need to be doneevery pair of individuals
in the intermediate population, it is done with sorprobability. The same applies
to the mutation. The crossover probability and moma probability are the basic
parameters of the algorithm, which have to be wisghosen, what requires some
experience with GAs. Mutation probability is usyadlet to small value; the order of 1%
or even less seems reasonable. Too much mutatioy pravent algorithm
from converging to the satisfactory solution, bessa@ach mutation introduces element
of randomness, what usually worsens the solutidmenwalgorithm approaches the right
one. On the other hand, too small probability oftation may let algorithm stuck

in so-called evolution trap, which is simply loeattremum of the optimised function.

39

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Successioninvolves replacement of old population by a neve.omhere are different
methods to do that. It can be simple replacemelhtnew replace all old or more
sophisticated like: few best old stay and the i®sthosen from the best new - so called
“elitism”. Here again, like in case of crossoverengor, the imagination of the algorithm
designer is the only limit.

The explanation of GAs functioning bases on theresgntation of the solutions
by chromosomes and on schemata [17]. Schemataudte Using “don’t care” symbol
(usually *) to the gene alphabet. Schema represalhtshromosomes, which conform
to it in all positions everywhere except * posigomn other words it represents hyperplane
in the search space. For example schema 10*00 esateglo strings 10000 and 10100,
and schema 1*0*0 matches four strings: 10000, 1001000, 11010. There are two terms
connected with schemata, which need to be definadis point, namelyschema order
anddefining length. Schema ordeu is the number of symbols other than * in the scem
For example schema 100*0* is of order 4, and schérig™* of order 1. Schemata
of higher orders are more specific; there are Iletgngs that match them.
Defining lengthA is the distance between first and last specify@ab®l (not * symbol).

For exampleA(1***0) = 5-1 = 4, A(****0) = 0, A(**11*) = 4-3 = 1. Defining length

is useful in calculations of probability of survivaf the schema after crossing-over.
It is easier to understand hyperplanes by drawirgntin 3D space. As an example
consider problem encoded with 3-bit chromosomes. @dssible solutions form hypercube
as shown in the figure 3.3 [18].

40

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

101 111

001 011

10 10

000 010

Figure 3.3. 3-bit Hypercube

The corners are labelled by 3-bit chromosomes trtieas, where all adjacent corners
differ by 1 bit. Every plane of the hypercube canrépresented by a schema. For example
front plane 0**, back plane 1**, top plane **1, ansb on. Assuming that binary
chromosome encoding of the length m is used, es@myer of the hypercube is a member
of 2" — 1 hyperplanes, ***...*** represents entire searspace and is not counted
as a hyperplane. Thé'3- 1 hyperplanes can be defined in the search spacause the 0,
1 or * can be placed in m positions. Fact that sokition is a member of™2-1
hyperplanes is the key part of GAs, because by ewdion of the single solution, many
hyperplanes are sampled at the same time. Theoids@arching for the perfect solution
by means of population of possible points givesehpgtential to the GAs, because in the
population of n members n"{A) schemata can be represented. Thus, usuallymbers

of population provide information on more hyper@arthan n. Furthermore, it is clear that
hyperplanes represented by low order schemataaanpled by more solution points than
high order. All above mention facts contribute t calledimplicit parallelism, which

is the true power of GAs [18]. Implicit parallelismeans that upon evaluation of the
population of chromosomes many hyperplanes are lsdmgt the same time. Every
hyperplane contributes to the fithess function leé solution points, which lie on it.
Chromosomes with higher fitness function value haigher probability of being selected
to the next population and to enlarge its presémtlee population, while those with lower

value of fithess function usually are removed frohe population. Therefore, more

41

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

promising hyperplanes are sampled more and moreispig while less promising are

forgotten.

An example can help to understand the hyperplamplézg. Consider 4-bit chromosomes.
The fitness function value is simply the number“@f in the chromosome. Fitness
function value for the schema is defined as avedddéness values of all chromosomes
matching given schema. Equation (3.2) defines $gnkinction value for the schema S,
where t is current population times;¥s the j-th string matching schema S, match famcti

value is the number of all chromosomes matchingsehS at time t.

an: fit(vy,)

Table 3.1. presents fitness values for 1*** and*Ofyperplanes.

Table 3.1. Calculation of fithess function valueslftf* and 0*** hyperplanes

Schema Fitness Schema Fitness
1000 1 0000 0
1001 2 0001 1
1010 2 0010 1
1011 3 0011 2
1100 2 0100 1
1101 3 0101 2
1110 3 0110 2
1111 4 0111 3
1Hx* 20/8=25 O*** 12/8=15

The hyperplane 1*** seems more promising, becaddegher fithess and therefore will
increase its presence in the subsequent generadre®urse hyperplanes *1**, **1* and
***] have the same fithess and will also increasepresence. But this is just explanation
of the idea and for the sake of simplicity, the sideration is limited to the hyperplane
1*** In the next step schemata of higher ordert lbepresenting hyperplane 1***,
have to be considered. The fitness for hyperplaté £ 12 / 4 =3, and for hyperplane
10** = 8 / 4 =2. Again going to the schemata oftteg order, but representing hyperplane

42

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

11** we get: fitness for 111* =7 /2 = 3.5, and fll0* =5/ 2 = 2.5. Finally 1111 = 4 and
1110 = 3. The final solution is 1111 with maximihéss function value. In this example,
the fitness function values for hyperplanes weréerd@ned precisely by calculating
average of fitness function values for all solutipoints belonging the plane, what is
obviously not the case in the real GA run, this lddoe pointless. In the real case only
solution points present in the population sampéetiperspace and by selection of better
chromosomes better hyperplanes are promoted. Fon@e chromosome 1010 contains
in its fitness function value contributions of tfwlowing hyperplanes: 1*** *Q** **1*
%0, 10**, *01*, **10, 1*1*, 1**0, *0*0, 101*, *01 0O, 1*10, 10*0.

After selection we expect thamatch(S,t+1) chromosomes matches schema S.
The probability of selecting the average chromosarma&ching schema S attime tis

S ™ ‘pop_size
Zfit(vj)
j=1

Equation (3.3) is similar to the equation (3.1) ftme probability of selecting

a chromosome, but chromosome fitness is replaceéd sdhema fithess. The number

of chromosomes matching schema Snigtch(S,t) Number of opportunities (selections)

IS pop_size.Collecting above-mentioned facts together, we cafinelethe number

of chromosomes matching schema S at time t+1 as

fit(S,t)

pop__size

> fit(v,)

pop_size

match(S,t +1) = match(S,t) [pop_sizelps = matchS;t) . (3.4)

(3.4) proves that number of chromosomes matchiagngschema changes proportionally
to the ratio of the schemata fithess function vadunel the average population fitness
function value. This means, that individuals eviddaabove the average increase their
presence, the average individuals do not change nbenber and individuals below the
average will decrease their presence. This comems fthe fact thate>1 in (3.5)
for schemata evaluated above average fitness @umotalue, e=1 for average;g<l

for worse than average.

pop_size

> fit(v;)
fit(St)=e—1>—— (3.5)
pop_size

By substitution in (3.4) by fit(S,t) from (3.5) :

43

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

match(S,t +1) = match{S,t) [& (3.6)
match(S,t) = match{S,0) (&'
Now it is clear that schemata above the average mare and more place in population,
what is more, it is exponential gain [17].
Selection mechanism does not produce any new s¢hamaolution points; it just copies
chromosomes to form intermediate population. Thislane in the next step of evolution
using crossover and mutation genetic operatorssd loperators obviously interfere with
schemata copying, and the equation (3.4) has teligktly modified to reflect the real
behaviour. For simplicity, only one point crossowgrerator will be considered here.
For example there are two schemata of length 10:
S, =***101F***
S =11F******Q
Assume, the crossover position is 7. SchepsuBrives the operation and S destroyed.
As mentioned earlier in this chapter, defining kngs the parameter, which helps
in probability of survival after crossing-oveA(S) = 6-4=2 and A(S;)=10-1=9.
The crossover position can be selected frowl possibilities, thus the probability

of schema destruction is:

A(S)

S)= 3.7
Pa(S) " (3.7)

Thus, the probability of survival

A(S)
S)=1-p,(S)=1- 3.8
Po(8) =1-py(8) =1- = (3.8)
However, not all chromosomes undergo crossover,tieitcrossover probability isc,p
therefore
A(S)

S)=1- 3.9
Po(8) =1 P =) (3.9)

In fact equation (3.9) should be inequality, beeatlgere is very small chance, that even
though the crossover position is inside the schiekeaS;, it will survive. This can be
the case when the child inherits genes, which m#tehschema. Thus, after collecting
selection and crossover mechanisms together equ@&tib) changes into:

44

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

matchS,t +1) > match(S,t) popfitigf,t) 1-p. ﬂ} (3.10)
S fit(v,) (m-1
pop_size

Mutation also can alter the schemata. The prolbibf changing single bit
in the chromosome s, thus probability of bit survival i% — p,. The number of positions
in the chromosome relevant to the schema is theroofl schema, so the probability

of schema survival is:

ps = L-p,)"° (3.11)
sincepn is usually much, much smaller than 1 (3.11) caafy@oximated as:
Ps(S) =1-0() [p, (3.12)
Thus, after collecting selection, crossover andatmr influence equation (3.4) becomes:
match(S,t +1) = match(S;t) E—IM 1-p, RO o(S) p,,, (3.13)
pop_ S|ze. (m _ 1)
D fit(v;)
j=1
pop_size

Again, the conclusion is that the number of chreomes representing schema evaluated
above the population average is rising exponenti@ut this has to be schema of small
defining length and low order, because only them destructive effect of mutation and
crossover is not relevant. However, crossover ant@ton operators are essential, because
selection as such, does not introduce any new sataento the population.

This is the basis for thechemata Theorem

Short, low order schemata evaluated above the avaga get exponentially raising

representation in the population. [17]

45

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

3.1.2. Pros and Cons of GAs

This section contains short summary of GAs propsrtilivided into advantages and

disadvantages.

Advantages:

= Easy to understand [19]

The basic concept of GAs is easy to understandhusecit is based on natural selection
and inheritance laws, which are easily explainatle to correspondence to real life
situations

= Chromosome abstraction

The algorithm designer does not have to deal wattameters of the optimised function,
does not have to change them directly or analyis¢iors between them. The basic idea
is always the same: evaluation, selection, gerggigrations and so on. Program works
on chromosomes, which code the solution and thoxsghe solution abstraction.

» Multiparameter optimisation [19]

Programs based on GAs are capable of optimisatioomany parameters at once.
The possible combination of parameter values isesgmted as single fitness function
value, which is optimised.

» Discrete functions optimisation

In case of discrete functions, analytical methodsnot be used, only stochastic ones
are able to find the solution. GAs handle discretel continuous functions without
problems because of above-mentioned chromosomaegabstraction.

» Always provides the solution [19]

This statement at first seems questionable, bfgdnhfrom the first population the solution
is available. It is not the best possible, but lbee® better and better with time. This is not
the truth when chromosome coding is chosen in a, wayich allows for coding
of individuals that are out of possible solutionst. sThis issue is discussed further
in the section 3.2.3.

= Solution is sought in whole search space

The search for the best solution is started fromymmandomly chosen points in the search

space and is then biased towards promising spactspo

46

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

» Relatively easy in implementation
The implementation requires only the following eéants:

o Population container — the container for individabgether with their genetic

material

o Genetic operations — selection, cross-over andtioata

o Fitness function implementation
Moreover, implementation does not consume memaryiiiory keeping, like in ordinary
stochastic algorithms. The “wisdom” of the popwdatiis incorporated into the genetic
material of the individuals.
» Flexibility
Once implemented, the program can be easily chamgedotally different problem.
As long as the physical structure of the chromosstags the same the only element
that must change is fitness function, becauseishike only part that deals with logical
chromosome structure.
= Easy to distribute [19]
Selection is the only step, which needs knowledfehe whole population, all other
operations require only information that they dikecact on (usually chromosomes).
Therefore, the program is easily distributable, yneomputers may work on the solution
of single problem.
= May be improved as knowledge on the problem is gagul
As knowledge on the problem domain is gained, closome coding and fitness function
can be easily adjusted to reflect the problem nmezisely and speed up the solution

search.

Disadvantages:

= Choice of representation and fitness function is dical [19]

The hardest task for the algorithm designer ishtmose appropriate chromosome-solution
correspondence and fitness function. ChromosomeldHmri able to code all possible
solutions of the problem, but prevent coding olioh that lies outside the acceptable set.
Fitness function has to take into account all ef goals algorithm has to achieve, and find
good balance between them, what leads to simulteneptimisation of all parameters.
In fact determination of chromosome coding andeBt function are critical parts

of the whole application. There are some attemptheoretically describe the right way

47

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

of doing that, but still right choice of those paeters of the algorithm depends mainly
on the experience and feeling of the designer. Marthat can be found in section 3.2.3.

» Genetic operations and parameters have to be wisethosen

As in case of chromosome abstraction and fitnesgtifon, the type of population
maintenance algorithm, selection scheme, cross-oy@e, mutation type, cross-over
probability and mutation probability have to beusdgd with care and feeling. Some trials
need to be done to get to know the problem, see different algorithms behave and
choose the right one. The imagination of the desigs the limit, therefore the algorithm
can be tailored to the problem, but here the théonyore helpful than in former case.
There are many well-investigated and describedrigfgns, which can suit the problem.

» Finish criterion problem [19]

There has to be some finish criterion set. This lsamaximum number of generations
or minimum required fitness function value. But & hard to estimate how many
generations are needed to arrive at satisfactdmytiao, therefore another disadvantage
is that application run time is hard to estimate. tbe other hand, the algorithm may be
unable to arrive at minimum required fitness fumetvalue in satisfactory time. However,
as mentioned in advantages section, in case oftigeatgorithms, there is always
a solution and application can be stopped at ang.ti

= Random number generator dependence

The success or failure of the genetic algorithm feydependent on the type of random
number generator used. This issue is further exgthin the section 3.1.3.

3.1.3. Genetic Algorithms Issues

There are couple of issues that are crucial forctianing of GAs. One of them
is mentioned in the previous section, namely chsonte coding. Some problems have
limitations, which decrease the set of valid solosi. The chromosome coding should be
designed in a way, which does not allow for invaautions coding (search space equals
set of valid solutions). In such a case algorithoesd not waste time and resources
for maintenance, evaluation or repair of individyalhich represent solutions wrong from
the point of view of the problem. But sometimessithiard to design such chromosome
coding, which guarantee only valid solutions. Mat&o complex decoders and coders can
have large computational power requirements. Anaperoach is to change problem into

one without limits. The search is carried out ie tithole solution space. Next invalid

48

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

solutions are punished for passing limits by deseaf fithess function value. Usually
the penalties are incorporated into fitness fumctiche penalties can be constant or depend
on the degree of limit violation. There are extreveesions of punishment, which remove
invalid solutions from the population. Sometimehjst method can be successful,
but has its drawbacks. In some problems, the piliyatf generation of valid solution at
random is relatively small and algorithm does natven forward, because too many
individuals die just after birth. Furthermore, ammsomes representing invalid solutions
may posses genes, which after couple of generatiodsgenetic operations may result
in good, valid solution. After death they no longentribute to population genetic variety.
Another method is based on chromosome repair. Afidividual is identified as invalid
solution, special operations are carried out onctim®@mosome, to put it back into the set
of valid solutions. However, this approach in soocases requires complex processing,

which consumes much of processing power.

As an example consider packing problem [17]. Theo$articles to be packed is given.
Every article has its weight W(i), its value P{the choice has to be made of one or more
disjoint sets of articles, where sum of weights sdo®t violate the limit of rucksack

capacity C and the sum of article values is maxifié problem is in choosing a binary

vector x=<x[1], ..., x[n]> such that:

3 i) < C (3.14)
and :

P(x) = gxm] (3.15)
is maximal. _

When vector is coded directly as binary stringh@ thromosome, it is obvious that invalid
solutions can occur in the population. In such secamethods described above can be
useful. At first, consider special coding/decodampproach. The chromosome can be string
of n integer numbers, where number at i-th positenfrom the range 1 to n-i+1.
The number is a vector, which describes positiosetécted article on the list of available
articles L. For example for L = (1, 2, 3, 4, 5,768, 9, 10), chromosome <3, 2, 2, 3, 2, 1, 2,
3, 1, 1> results in the following list of items sefed: 3, 2, 4, 6, 5, 1, 8, 10, 7, 9. Such

coding has a big advantage, the crossover of twenga gives valid children. Mutation

49

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

at i-th position of the chromosome changes its esdatuthe one in the range [1, n-i+1].

Figure 3.4. presents possible decoding algorithhighvguarantees valid solution.

START i

j =[]
Remove j-th element from L

Build list of items L
i=0

WeigthSum := 0
ValueSum:=

NO

YES

=i+l v WeightSum := WeightSum + Weight][j]
ValueSum := ValueSum + Value[j]

Figure 3.4. Decoding algorithm for rucksack problami

While chromosome is decoded, only those itemsakent that do not violate the capacity
of the rucksack limitation, therefore only validigmns are generated. There can be two
flavours of the decoding algorithm. One can buigd L at random, second can build list
as ordered list, for example in descending ordemabfe to weight ratio.

Next, consider punishment for violation of limi@ati method. Fitness function
of the individual is decreased by the value of pgemalty function Pen(x) such that
for every valid solution, that is fulfiling inequil (3.14), function equals 0 and for any
other is greater than 0. This function can be aefinin variety of ways.
Equations (3.16 — 3.18) present examples of sufthitiens [17].

p =max_, {Mli]/Wil}

Per(x) =log, (1+ pI(Y. il W(i] ~C) (3.16)
Per(x) = p {3 il W[i] ~C) (3.17)

50

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Per(x) =(pfﬁi>{i]W\/[i]-C))2 (3.18)

The Pen(x) function value is dependent on the degfehe limitation violation. In (3.16)
this is logarithmic dependence, in (3.17) lineard.18) square dependence.

Last method of dealing with invalid solutions is repair chromosome in a way, which
brings it back to the valid solutions set. Assumstgndard chromosome coding, i-th item
is put to the rucksack, whedji] = 1. This can produce solutions, which viol&taitation
(3.14). The repair procedure creates chromosoxhewhich is repaired version
of chromosome&. What is interesting, repaired chromosomes calaceponly some part
of original chromosomes, what leaves some invalidut®ns, but ensures variety

of genetic material in the population. Figure fesents proposed repair algorithm.
START

RucksackOverflow:=false NO
1
X =X

YES

RucksackOverflow := true

i := selec item from rucksack
X'[i]:=0

NO
H
YES

RucksackOverflow := false

Rucksack

Overflown
2

Figure 3.5. Chromosome repair algorithm [17]
51

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Selection of the item to remove Ilselect function can be done in variety of ways.
For example, item can be picked at random or #ra with smallest value to weight ratio.
Another issue, important at the stage of algorittesign isSRandom Number Generator
(RNG). Genetic algorithms belong to the class oflsastic algorithms, therefore they use
randomly generated numbers intensively. Random ewsnlare needed everywhere,
during selection, mutation, crossover, etc. Theckumion is that random number generator
does have influence on application functioning. Tinere ideal generator is, the smaller
is its negative impact on the genetic process, usscdow quality RNG can interfere
with statistical process. Such interference may Haed to isolate, because usually
programmers look for the bugs in code, and notatissics.

RNGs can be divided into two groups: software anddware generators. Hardware
generators require some hardware connected todimputer, which generates numbers
or voltages and then transmits them to the compuiarserial link for example). Some
of them employ physical properties of the mattiée thermal noise or radioactive decay.
Shot noise from the resistor or signal from theiathoh detector can be amplified
and converted into bits, bits into bytes and themdferred to the computer. Some use
access times to the hardware like hard disks, lkaygbor mouse as basis for number
generation. Numbers generated by hardware generab@ purely random, because
abovementioned events cannot be predicted. Thereftney are widely used
for cryptography - key generation, lottery or siatiwons of physical phenomena.
However, hardware RNGs are not portable as theyiree@ulditional hardware, drivers,
etc. Some commercially available motherboards hbhaedware RNG incorporated.
For example, Intel i8xx based motherboards areppega with 82802 Firmware Hub,
which contains hardware RNG. This RNG uses the theseresor to convert thermal noise
generated by the system to produce random numBerdurther information, please refer
to [20]. In most of the stochastic applicationstwafe RNGs can be used. They generate
pseudo-random numbers, because it is not possilgerterate truly random numbers with
arithmetic algorithms, as they are repeatable ardigtable. Almost all RNGs are based
on the sequences of numbers, therefore they wotlkdles or in other words are periodic.
They use sequences to generate numbers. Considexaawple,Linear Congruential
Generator (LCG), which is widely used by RNGs [21]. Every igée is generated using
previous generated value. This is usually doneitik@.19).

X, =alx, +c (modulo m arithmetic) (3.19)

52

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

a and c are constant integers, such generator is denoged GG(a, ¢, m,
The randomness effect is caused by the use of moaularithmetic. In modulo m
arithmetic, integer must be smaller than m, it b&nregarded as the remainder part of
division by m. For example integers 0, 1, 2, 3546, 7 converted to modulo 4 arithmetic
become 0, 1, 2, 3, 0, 1, 2, 3. Generator needs starteng point referred to aged which

is X value. As an example consider LCG (5, 1, 8, 1). filmabers generated are presented
in the table 3.2.

Table 3.2. LCG(5, 1, 8, 1) generated numbers

Number Value Binary value
Xo 1 001
X1 6 110
X2 7 111
X3 4 100
X4 5 101
Xs 2 010
X6 3 011
X7 0 000
X8 1 001

The following properties can be distinguished:

= maximum period of the generator is equal to the uhedm,

» the distribution is uniform (all possible integare used),

* any seed results in the rotated, but identical secg of numbers

* numbers are not random; serial correlation betwdwmm is obvious. They form
alternating sequence of even and odd numbers foherthe least significant bit forms

sequence of alternating zeroes and ones

Next consider LCG(5, 0, 8, 1). The table 3.3. sunmsearthe results.

53

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Table 3.3. LCG(5, 0, 8, 1) generated numbers

Number Value Binary value
Xo 1 001
X1 5 101
X2 1 001

The following properties can be distinguished:

= period of the generator is 2

» the distribution is uniform for small granularity to 2 ranges), namely for ranges
[0, 4) and [4,8), but distribution is no longer fanm for larger number of ranges

= seeds 1 and 5 result in the same sequence, whie $teds result in other sequences,
but with the same period

» numbers are not random; serial correlation betwd#em is obvious. They form
alternating sequence of 1 and 5, therefore 2 &gsificant bits are always 01.

Above-mentioned LCGs have many disadvantages, it tnquestionable advantage

is their speed and small resource consumption. Gheice of the RNG suitable

for application depends on the granularity of tihebfem, the number of random numbers

needed, the speed of generation. The following RNGpegrties should be taken

into account upon selection:

» Period Generally, the larger the period, the better. llgesequences generated
by the RNG should not repeat, but in practice réipatiafter generation of very
large set of random numbers is acceptable in soppdications. This is very
important especially in cryptographic applicatiohecause RNG with large period
is much more secure, than one with short periochynggenerated keys have to be
collected to enable prediction of the next key)n&ally cryptographers stay away
from the linear RNGs because of their predictability

= Uniformity Numbers generated by the RNG should be distributeiforonly
in whole generation range. The lack of uniformitync severely affect
the application, which expects uniformly distribdit@ndom numbers.

= Correlation Ideally, there should be no correlation between toasecutive
numbers, they should be independent. Howevernpeal generators every number

depends on the previous one, therefore correl&ianavoidable.

54

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

= SpeedIn applications, where huge sets of random numbeesneeded, speed
is critical aspect. Usually there is a trade-oftween speed and randomness
of the RNG, therefore stochastic simulations usualhgploy linear generators
with large periods, and cryptography employs masenglex and slow, but less

predictable generators.

3.1.4. Genetic Algorithm for Circuit Design
This section presents the ideas for the applicatdmch can be useful for circuit design.
Random Number Generator
The first thing that should be set up for the aggilon is the proper random number
generator. Genetic algorithms belong to the grdugtachastic algorithms, therefore good
linear RNG should be satisfactory. RNG for this psgeshould:
= Be fast - speed is one of the greatest concerns in @s®,cbecause huge sets
of random numbers will be needed. Slow RNG woulceciffthe application
performance severely.
= Have large period — this is not a cryptographic application, but iaswas
mentioned in the previous section, with large mgiomore randomness
is incorporated into the generated numbers and itfleence of the RNG
on the process is smaller.
= Have uniform distribution — application expects RNG to generate numbers,
which are uniformly distributed within the genemataange, therefore
any non-uniformity may result in reduced speed a@fvergence or non-optimal

solution.

The RNG usually shipped with C or C++ compiler, nam#éhe implementation
of the rand() function form the C standard librargynror may not be a good choice.
The properties of this generator depend on theemehtation, can be different for every
compiler or platform. Therefore, this RNG cannotbanted on.

Mersenne Twister (MT) generator has properties, which should beisfsatory

for the genetic algorithms. It is not cryptograattig secure, because it is based on linear
recursion. However, its other advantages makeetliflor stochastic simulations despite

generator linearity [22]:

55

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

= (C-code- generator is coded in C language, therefore itaple to any platform
and is fast enough. It is even faster than somdemgntations of ANSI-C rand()
function.
= Speed- generation of 100,000,000 random numbers tookgdiierator 2557 ms
and standard rand() 3943 ms
= Large period — the proved period of this generator 1£%-1
= Uniform distribution — 623-dimension equidistribution is assured
» Small memory consumption- it uses only 624 words of memory
Every generator needs a starting point, a seed.s€bd is usually chosen to be the time
value at the moment of application start, whaiafiges the generator with different value

at every execution.

Chromosome representation

The aim of the algorithm is to design such circuthat its implementation

in the programmable device will remain functioninglespite single error
on any of configuration bits. Circuit at the logiclEvel can be designed without
the knowledge on its physical implementation, baot order to design a circuit
that is radiation tolerant, its internal, physis&ducture must be known. That is because
radiation interacts directly with the silicon sttuies. In this case the target programmable
circuit has to be chosen. The GAL16v8 describedhapter 2 seems to be a reasonable
choice, because it is small, simple device, witHatreely short configuration.
The additional important feature is that the ingéérstructure of GAL is well documented,
what is not the case in vast majority of other paogmable circuits. These properties make
this device easy to simulate, what is also veryartgnt in purely software-implemented
algorithm. Moreover, not all 2048 bits of configtioa have to be used, it can be shortened
to speed up the calculations, when not all 8 in@uts needed. The figure 3.6. shows

how shortened configuration is created.

56

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

™,
1> 1> 2128
(4 12 6 20 24 28 PTD 1
0000 o
%g; OLMC 19
0224 = XOR-2048
20—z sHT AC1-2120
0256 D_::
%; oLMC —K 318
0480 =
u XOR-2049
3—3 sHH AC1-2121
0512 =
& OMC —K 317
0736 -
u XOR-2050
40—3 sHH AC1-2122
0768 o
%EE OLMC % 316
0992 }EE
u XOR-2051
5o—3 sHT AC1-2123

Figure 3.6. Only part of the GAL16v8 is used [10]

In figure 3.6. only inputs 2, 3, 4, 5 are usedref@e only 16*7*4 = 448 bits are needed.
One could argue, that the rest of the configuratisnalso a subject to SEU
and that application should deal with 2048-bit agunfation. Moreover,
there are configuration bits, which cannot be mma@une by means of circuit design.
The change of any of the configuration bits putaaieinto different operational mode and
thus produces bad output. Finally, one could ndheg¢ nowadays GAL16v8 configuration
is held in EEPROM memory, which is build using fiogt gates and is not a subject
to SEUs. All above mentioned arguments are trug, AL is chosen here because
of its simplicity. It serves as a basis for simigias, which are needed to check
if the method of using GAs for fault tolerant ciitsu design can be successful.
The improved version of the application should waosk programmable circuits,
which hold their configuration in memory suscemiltd SEUs. Another difficulty is that
beside SEUs, SETs may occur in the circuit, but dlesigned system is not going
to simulate SETSs, therefore configuration is no¢pared for dealing with this type
of SEEs.

57

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Chromosomes have to code configuration somehow. stfagghtforward idea is to put
configuration bits directly into the chromosome.fatt this seems to be the only coding
we can use, because the main part of the algorglsimulation of SEEs by configuration
bit changes, what imposes the usage of the direcfiguration. Such coding has its
disadvantages, namely the chromosome with configurarepresenting valid circuit
(fulfilling the truth-table) can become invalid eftgenetic operations. Therefore some
of the techniques described in section 3.1.3. shdnd used. Special coding/decoding
scheme seems to be not a very good choice, beaausentioned earlier, the chromosome
must correspond to the physical structure of theicde Coding at higher level
of abstraction (the level of gates for example) lomger describes the physical
interconnections in or between cells, thus canmoewmluated for fault tolerance. Repair
algorithm is also hard to think of, because hawangonfiguration from the chromosome
and its fitness function value, one is unable tg baw to change the configuration
to obtain better results. The only way of doingttisato change the configuration bits,
evaluate it and check the result. But this is whatdenetic algorithm is supposed to do,
not the fitness function or repair algorithm. THere, punishment method seems to be
the right choice in described case.

Fitness function

There are couple of way of fitness function valegednination that can be used. There are
two groups of functions needed, namely basic fonetity evaluation and radiation
tolerance. For simplicity, in the further part dfettext, former function will be called

“short evaluation” and the latter “radiation evdion”.

Short evaluation should give a measure of how good is the GAL witimfiguration
contained in the chromosome at performing basictfans needed. Combinatorial circuits
are the only ones we are dealing with, therefordlfe desired circuit and every evaluated
circuit, the truth-table can be formulated. Sucblgacontains all possible combinations
of inputs with corresponding values of outputs. &lsuinput values are put in rows
and output values are put in columns. The shoruatian can be simply the total number
of output values of the circuit evaluated, whichmeggwith the output values of the needed

circuit in the same truth-table row. Tables 3.4 &8rb. show exemplary truth-tables.

58

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Table 3.5. Randomly chosen circuit

Table 3.4. Full-adder truth-table Truth-table

Inputs Outputs Inputs Outputs
A B Cin Y Cout A B Cin Y Cout
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0
0 1 0 1 0 0 1 0 1 0
0 1 1 0 1 0 1 1 0 1
1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 1 0 1 0 0
1 1 0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 U

Full-adder is described in chapter 5. Table 3.oataios the truth-table of the real
chromosome generated in the early stage of thetigaalgorithm. It does not function like
the full-adder, however it does have proper outmlties for some inputs. The short
evaluation will give the result 10 in this casecdngse there are 10 places, where outputs
agree. TheJ symbol in the table 3.5. denotes unknown statie@utput. Unknown state
of the output may happen for certain input combamest, when configuration contains
feedback connection. Figure 3.7. shows an exemptauit, which produces U value
at the output. Table 3.6. contains its truth-table.

5) 0
_/

Figure 3.7. Circuit with feedback

59

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

R ol o >
o Rl ol W
ol o o O

1 1 U
Table 3.6. Truth-table for the circuit from fig.73.

Radiation tolerance evaluation should give a measure of how good is the GAL
with configuration contained in the chromosome arf@rming functions needed,

when there is a single fault in configuration.

Version 1 (“normal”)
In the simplest case, this can be the averageant shialuation results for every bit flipped

in the configuration. Equation (3.20) shows thdardebn of this fitness function.

Zn: shortFit(flip (C,i))

radFit, (C) = =L - (3.20)

where:

n — the length of the chromosome C

radFit;(C) - radiation tolerance evaluation result for chreome C

shortFit(C)— short evaluation result for chromosome C

flip(C,i) — function which returns chromosome C with i-thflytped

This version of the evaluation function has seridtevback. It does not take into account
the fact whether the chromosome is valid withouy dit flipped. This predestines

this function to the algorithm with removes invatidromosomes in the evolution loop.

Version 2 (“added”)

In order to alleviate the drawback described abdkie, following radiation tolerance
evaluation function can be used:

(Zn: shortFit(flip (C, i))J + shortFit(C)
radFit, (C) = ~=

3.21
1 (3.21)

60

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Here the validity of the chromosome without any Ituis checked, moreover
the individual with the fitness corresponding te timaximum possible value (as defined
by (3.24)) guarantees the desired functionalittheut any faults and with single fault
at any position in the configuration. Short evalatof non-altered configuration can be
regarded as a penalty, because it lowers the éitrfesction slightly. However,
this approach has also a serious drawback. Naroely,the ideal solution is sure to be
valid for configuration without a fault. The solomi that gives evaluation result smaller
than the maximum possible does not perform as etbsior some configurations,
one of them may be unaltered one. This resultshig dimitation - non-ideal solution may
be useless. Since chromosome, which is sensitifaults on 20 bits is much better than
one sensitive on 448 bits, it would be advantagetushave non-ideal solution,

which guarantees validity with non-altered confegion.

Version 3
In order to alleviate the drawback described abdkie, following radiation tolerance

evaluation function can be used:

Zn: shortFit(flip (C,i))
radFit,(C) = Pen(C) 3= . (3.22)

where:
Pen(C)— a penalty function for the chromosome C. Thiscfiom takes the values from

the range [0, 1]. O for maximum penalty, 1 for remalty.

The penalty function can have different definitiofdgure 3.8. shows three possible
penalty functions.

61

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Penalty functions
l_
vy 4
=
v
”~ »
-~ K
-~ ¢
0.8 ” »
- s
e
e
e
0.6+ e e
d
7
y .
o
Ve o
0.4 V4 'o'
7 R
7/
// o ——— y=L0g2(14X)
7 y=x
0.21 // B s y=x'2
Ve o
/
/
/ ,-"’
- / STt
§; pas=nc? T T T T T T T T T T T T T T T T T 1
0 0.2 04 0.6 0.8 1
X
Figure 3.8. Possible penalty functions
Version 3a (“log2”)
Logarithmic function can be used for penalty fuoctdefinition:
shortFit(C)
Pen (C)=|1+log,| —————= 3.23
r!%a() (gz(maXFit j] ()
where:
maxFit— maximum possible value of the shortFit(C) defiasd
maxFit = outputs2™"* (3.24)

outputs, inputs— number of outputs and inputs defined in refesemarcuit
(in case of full-adder maxFit = 16).
This type of penalty function slightly departs frothe punishment proportional
to the number of wrong output values. The largerafig is put on the individuals, which
produce many or litle number of wrong outputs. Tpenalty is slightly smaller

for the individuals that have ca. half of the ougpwrong, thus this function can be more

62

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

effective at the intermediate stage of simulatibrguarantees that the individual is valid
with non-faulty configuration, when fitness fungctis above the limit defined in (3.25)

1+log,[ML) it (3.25)
" maxFit

In case of full-adder, when maxFit = 16, this limsitz14.51.

Version 3b (“proportional”)
Linear function can be used for penalty functiofirdgon:

shortFit(C)

Pen, (C) = maxFit

(3.26)

This type of penalty function punishes every indial proportionally to the number
of wrong output values. It guarantees that theviddial is valid with non-faulty
configuration, when fitness function is above tinatldefined in (3.27)

maxFt = axFit = maxFit-1 (3.27)
maxFil

In case of full-adder, when maxFit = 16, this limsitL5.0 .

Version 3c (“square”)

Square function can be used for penalty functidmien:

shortFit(C)jz (3.28)

Pen.(C) :(maxFit
This type of penalty function puts more punishmemtindividuals, which produce more
wrong output values. The more proper outputs preduthe smaller penalty. Moreover,
penalty function, by its non-linearity strongly pmotes better individuals. Thus,
the performance of the algorithm employing thisction may be low in the initial stage,
but then it should be higher. It guarantees that itidividual is valid with non-faulty
configuration, when fitness function is above tingtldefined in (3.29)

(m""x—':'t_l]z [MaxFit (3.29)

maxFit

In case of full-adder, when maxFit = 16, this limsitL4.0625 .

63

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Fitness scalers

Additionally to above mentioned implementationditfess function, fithess scalers can be
used. Scalers enable control of selection presSaiection pressure and genetic diversity
are two factors, which severely affect evolutiolmgass. These two factors are strongly
correlated. Larger selection pressure decreasesersitiyv of genetic material
in the population. In the other words, too largéec#n pressure supports pre-mature
convergence of the genetic algorithm and too smsalection pressure may result
in inefficient search. Therefore, it is very impont to keep balance between those two
factors. Fitness scalers can be used when indidae selected to the intermediate
population. For example in roulette wheel selegtiitmess of each individual could be
an argument of some scaling function. Square oicctunction are suitable for this
purpose, because they give more chance of placcapy in the intermediate population
to the individuals with better fitness function wel

Chromosome cross-over operators
As described in section 3.1.1. one point cross-operator is not the only way of selecting
genes from parent chromosomes. The other idea list this section just mentioned

are presented below in details.

Two point cross-over

Parents Children
101/013‘ 01001111010 }QlOl(10100: | 010011011101 | 10101:
1011171 01001101101pT 010: 10111: | 01001111010C | 01011:

Figure 3.9. Two point cross-over operation

Two cross-over positions are picked at random aad @f the chromosome contained

between them is exchanged.

64

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Operator exchanging segment of constant length

This is operator identical to the one describedvabdut it picks only one cross-over
position. The position is chosen from 0 to L-S, vehk is the length of the chromosome
and S is the length of the exchanged segment. @bend position is the first position
moved by S. This operator may be useful in situgtivhere adjacent genes are somehow

correlated and should be inherited together.

Operator exchanging segment of constant length aviplacement

This is operator identical to the one describedvapbut cross-over positions are chosen
independently for every parent. This results inpldised segment of genes. Operator
affects the schemata severely, thus introducingtyemdiversity. However, the diversity
is different than one caused by mutation, becawasgel groups of adjacent genes
are changed.

Parents Children
01001 01001111010)(QlOlj 10100: | 111010011011 | 10101:
|
10]I 1110100110110 1[@/0102 101 | 01001111010C | 10101011
1

Figure 3.10. Operator exchanging segment of corndéngth with displacement

Uniform cross-over operator

In this operator one child receives a gene frondoamy selected parent and the other
child from the other parent. Every gene is inhdritedependently. This exchanges
the single genes instead of groups of genes, trrudifferent properties of the parents may

be inherited disregarding their relative position.

Parents Children

g 10100101001 > 1 01 O 1101 | O | O 11

101111010011 1 01 10101 | 0 |O 11

Figure 3.11. Uniform cross-over operator

65

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Evolution program

Up to this point, the elements of evolution progsamere described. The elements, which
can be used almost in any program, in any gendgjorithm. However, they cannot
be used without the evolution program itself. Théection presents possible
implementation of the evolution program.

Main loop of the program is usually constructednafigure 3.12.

(START)

\ 4
Initialise population

<

Is searcl
finished?

Evolveto the next generatior

Figure 3.12. Main loop of the evolution program

Initialise function
This function simply fills chromosomes of the pagiidn individuals with randomly

generated genes. Usually genes are selected feoaliléhes with equal probability.

Is search finishedfunction

This function returns boolean value that informs pnogram whether the evolution has led
to the solution required or not. Usually maximummeg@tion number or minimum required

fithess or both just mentioned requirements ard asdinish conditions.

Evolvefunction

This function is the main part of the programakes the population to the next generation.
This can be done in variety of ways, there are ntesr limiting the designer.
Usually couple of them need to be tested beforeatgerithm suitable for the problem
is found. Three ideas for this function are preseielow.

66

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Version 1 (“classic with overlapping”)

This is the realisation of classic Goldberg aldon} but supports population overlapping.

It requires the following parameters:

Population size(PopSize)- the size of the population used by the algorithm

= OQverlap size (Overlap)— the number of best individuals, which are comladctly
(without cross-over or mutation) from the currerdpplation to the offspring

population

= Cross-over probability (CrossProb) — the probability of cross-over between

individuals in the intermediate population

= Mutation probability (MutProb) — the probability of gene mutation

in the chromosome

Fitness scaler (FitScaler}- scaling function used for selection pressurdrobn

Figure 3.13. presents the block diagram of therdlgu.

67

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

START

Overlap
>

PopSiz?

NO > Radiation evaluation
A of all individuals in
population

v

,_) offspring := select
Overlap:= PopSize PopSizeof individuals
from population

v

Cross-ovepf all
individuals in
offspring

v

Mutation of all
individuals in
offspring

v

Radiation evaluation

of all individuals in
offspring

offspring := Ovirlap
offspring + population POpSiz?
v
offspring :=
offspring — Remove :
Overlapof worst ~ offspring :=
individuals from offspring + CopyOverlapof
offspring — best individuals from
¢ population
Population := offspring STOE

Figure 3.13. Classic genetic algorithm with overlappof poulations

68

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Radiation evaluatiofiunction

This function simply determines the fithess functi@lue for each of the individuals using

radiation tolerance evaluation function.

Selectfunction
This function selects individuals from the popuwdati This can be done for example using
roulette wheel selection. Additionally, fitness leca can be used to control the selection

pressure.

Cross-overfunction

This function performs cross-over of pairs of induals in the population using one
of the cross-over operators. Pairs can be seleatedhe order of appearance
in the population: 1-2, 3-4, 5-6 and so on. Howeteis approach is in agreement with
statistics only with evelPopSize because in the case of oBdpSizethe last individual
is never crossed-over. Thus, the order is relewanrtt the whole operation is unfair.

Cross-over is performed for every pair with probgb#qual toCrossProb.

Mutation function
This function mutates every gene in every chroma@somth probability MutProh
This implementation is dependent on the length ¢ thromosome. The longer

the chromosome, the more mutated genes expected.

Copy bestunction
This function copies n best individuals from thepplation. When there are more
than n individuals with largest fitness value, tbleoice which of them to copy has

to be made at random. Choice made on a basis @idodis position is unfair.

Remove wordunction
This function removes n worst individuals from thepulation. When there are more
than n individuals with smallest fithess valuee #thoice which of them to remove has

to be made at random. Choice made on a basis @idodis position is unfair.

69

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Version 2 (“classic with overlapping and strong $tar

In order to accelerate the search, initial setamfdomly generated chromosomes may be
modified before the main evolution loop. For exaenpthe minimal number
of chromosomes performing the required functiorhwibn-altered configuration (strong
individuals) may be required in the initial popidat The Strong function presented
in figure 3.14. may be put aftaitialise function in the main evolution program loop.

Additional parameters needed by this function are:
= Strong treshold (StrongTreshold) — the factor (0 to 1.0), which indicates when
the individual is considered as strong. With faddr only those with fitness equal

to maxFitare considered as strong.
= Strong ratio (StrongRatio) — the factor (0 to 1.0), which controls the number
of strong individuals required in the population $top the_Strongfunction.
Factor 1.0 sets the minimum required numbd?dpSize.
The _Strondunction is presented in the figure 3.14.
This function provides start point with higher &8s, what results in faster convergence,

but it decreases the diversity in the populationl @ensumes the processing power,

what may result in pre-mature convergence.

70

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Strongfunction
InitDone ;= false START
Offspring:=_Copy ant
Cross-oveall
individuals from
population l
¢ Short evaluatiorf all
Mutation of all individuals in
individua_ls from offspring
offspring l
offspring := StrongNo:= number of
offspring + CopyOverlap individuals inoffspring
of best individuals from [~ with fitness greater or
population equal to
StrongTresholtimaxFit
population :=
CopyPopSizeof best NO StrongNo
; individuals fromoffspring =
StrongRatio
*PopSize
InitDone YES

true ?

STOF InitDone := true

Figure 3.14. Strong function

Copy and cross-ovall individuals

This function copies every possible pair combinaidrom the population. Every pair
copied is crossed-over. This function produces maendyviduals, but provides wide

selection possibilities. For example population df00 individuals produces
10000 individuals for short evaluation.

71

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Version 3 (“greedy for processing power”)

The idea put in th&trongfunction can be used in the whole algorithm. Adsgible pair
combinations may be used to search the solutiomespar the right one. Moreover,
the individuals, which do not meet the requiremearais be removed from the population.
The Strong function is no longer used here, tB®olve function is severely changed,
as in figure 3.15. Parameters required in thisrélym and not yet described are:

Strong required (StrongRequired) — the number of strong individuals required

in the population. This algorithm no longer uS&®ngRatio

» Required short fitness (RegShortFit) — the minimum fitness function value,
which is required for individuals after short ewation is done. This is taken into

account in selection which individuals to remove.

» Required radiation fitness (ReqRadFit)— the minimum fitness function value,
which is required for individuals after radiationldrance evaluation is done.

This is taken into account in selection which indiials to remove.

» Maximum population size (MaxPopSize) — this is the maximum size

of the population after the evolution step.

This function produces many individuals, even & thdiation tolerance evaluation step.
Therefore, it needs much of processing power, lscaadiation tolerance evaluation
is the most computationally intensive part of thegoam. The advantage of this algorithm
is that it does a wide search, because many ingasdare checked, but by removing
non-satisfactory individuals it decreases genatierdity in the population, what may lead
to pre-mature convergence.

72

Tomasz Norek

Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

START

Offspring:=_Copy ant
Cross-oveall
individuals from

population

v

Mutation of all
individuals from

l

Short evaluatiomf all

offspring individuals in
¢ offspring
offspring := i

offspring + CopyOverlap
of best individuals from

StrongNo:= number of
individuals inoffspring

Radiation evaluation
of all individuals in
offspring

population i
— with fitness equal to
maxFit
offspring := StrongNo
offspring — Remove =z
« all non-strong Strqng ‘
individuals from Required
offspring

v

ToStay.= number of

aboveReqRadFit

individuals with fitness

ToStay.= number of
individuals with fitness

population := Copy
MaxPopSizédest
individuals from
offspring

ToStay
>

MaxPopSize
?

aboveReqShortFit

NO

v
population := Copy
ToStaybest
individuals from
offspring

P>

STOF

Figure 3.15. Greedy evolution algorithm

73

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

4. Distributed System

All evolution program implementations describedtle previous chapter require large
processing power resources. Usually such applicsitiare run on supercomputers,
which use many processors to finish computationalignsive tasks in satisfactory time.
However, supercomputers are not widely availabtg, many scientific or even military
institutions can afford these machines. Thereftireir usage is very limited. When large
computing power is needed, but is not availablsimigle machine, the distributed system
can be used. Such system distributes the parteqgfroblem to many machines; they work
simultaneously on the parts provided and returnréiselt. This approach is useful, when
there are many unused ordinary computers availaitéch can devote their resources
to the system. This idea reminds computer farmgnotreated in academic centres.
But computer farms are much bigger than the desiggsigm and usually cooperate using
WAN connections. There are several well known thated systems utilising Internet
as connection medium between elements of the systdfor example
Search for Extraterrestrial Intelligence at honSETI@Homé [23]. It is a scientific
project seeking for the intelligent life outside rtBa It uses the processing power
of participating computers to analyse the signalming from the UC Berkeley telescope.
The client program comes in a form of a screen rsaNermally computers run screen
savers, when they are not used, but stay poweredTbair resources are wasted.
Here comes the SETI system, which utilises the pafeghousands of such computers
around the world. This provides large potential,icthcan be used to analyse data
from the telescope. The purpose of this thesi® isréate the similar system for circuit

design using genetic algorithms.

74

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

4.1. System Structure

Usually distributed systems use client/server &echire. The designed system has one,
central server and many clients connected. This indsn the star topology.

Figure 4.1. presents the elements of the system.

Computing
Node

System
Manager

Computing
Node

Computing
Node

Computing
Node

Figure 4.1. Distributed computing system

Every element presented in the figure 4.1. can kecwided on separate computers
or on one machine for local computations. Doubtewas indicate communication between
elements of the system, what can be achieved usindistributed environment.

The most computationally intensive part of the atioh program is the evaluation

function value calculation; therefore this is thartpof the problem, which should

be delegated to many machines. Description of plessiistributed environment choices
is presented in the section 4.2.

The functions and internal structure of each elérasmpresented below.

System Manager

This is the main part of the system. By assumptibare can be only one main node.
It prepares the parts of the problem that can tegdeed to the computing nodes and than
collects the results. The internal structure of tBgstem Manager is shown

in the figure 4.2.

75

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

Garbage Collector

Thread
Population Thread System manager interface Thredd
Population System manager interfggce
Logger
A
System manager Thread
System manager
Job queue Remote
element:
Return job queue of the
system
Node Threa
Local node interface Node Threa
Simulator Remote node interface
Thread instances <+—» Local communication
Class instances <=> Remote communication

Figure 4.2. System manager internal structure

Population thread

Every population thread together with populatioassl instance represents an evolution
program. Population thread provides main evolupomgram loop processing. Population
class contains population parameters, the chromesahpopulation individuals and code

describing how to prepare the population for evotutand how to evolve to the next

generation. It also creates an instance of Log{gssc which saves the most important

76

Tomasz Norek
Distributed System for Designing Reliable Digitgst&ms Using Genetic Algorithms

parameters of the population to the file. In féog Population class cannot be instantiated,
because it is an abstract class. It needs to keriieh and descending class implements
evolve() and initialize() methods. This way, program can be easily extendiéd mew
evolution algorithms. The figure 4.3. shows the ewfance diagram of classes

implementing all algorithms described in sectioh 4.

Fopulation

t
| |

FopulationGreedy FPopulationCwerlap

I

FopulationQve rlapstrong

F