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1 Introduction

The post-linac collimation system of the European X-Ray FEL Facility (XFEL)
should simultaneously fulfill several different functions. In first place, during routine
operations, it should remove with high efficiency off-momentum and large amplitude
halo particles, which could be lost inside undulator modules and become the source
of radiation-induced demagnetization of undulator permanent magnets.

The system also must protect the undulator modules and other downstream
equipment against miss-steered and off-energy beams in the case of machine failure
without being destroyed in the process. In order to avoid unnecessary complications,
the post-linac collimation system is designed as passive (i.e. without integrated fast
emergency extraction system, or fast sweeping system, or fast beam enlarging sys-
tem). The collimators must be able to withstand a direct impact of such number of
bunches which can be delivered to their locations until a failure will be detected and
the beam production in the RF gun is switched off.

From the beam dynamics point of view, the collimation section, as a part of the
beam transport line from accelerator to undulators, must meet a very tight set of
performance specifications. It should be able to accept bunches with different ener-
gies (up to ±1.5% from nominal energy) and transport them without any noticeable
deterioration not only of transverse, but also of longitudinal beam parameters, i.e.
it must be sufficiently achromatic and sufficiently isochronous. This will not only
reduce jitter of transverse beam parameters and time of flight jitter due to an energy
jitter, but also will allow to fine-tune the FEL wavelength by changing the elec-
tron beam energy without adjusting magnet strengths (an energy change of ±1%
corresponds to a ±2% change in the FEL wavelength) and, even more, will make
possible to scan the FEL radiation wavelength within a bunch train by appropriate
programming of the low level RF system.

Some of above requirements are not in good agreement with one another and,
as often, the basic problem is to find a balance among all competing factors so
as to have at the end a system which still satisfactory fulfills design goals. For
example, relatively large betatron functions, which are needed at the collimator
locations to guarantee their survival during occasional beam impacts, lead, as a
rule, to unacceptable chromatic aberrations and, therefore, chromaticity correcting
sextupoles are essential in preventing the dependence of linear optical parameters
on the energy deviation. Chromatic-aberration correction with sextupoles, in the
next turn, requires a beamline with dispersion, which, in the relatively short system,
makes separate regulation of transverse and energy collimation depths difficult and
thus reduces flexibility of a system, and so on.

The conceptual design for the XFEL post-linac collimation system which satisfac-
tory fulfills the listed above requirements was first suggested in [1, 2] and then, with
some minor modifications, was evolved into practically realizable form in [3, 4, 5, 6]
and was shortly described in the XFEL Technical Design Report (TDR) [7].
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The following report gives a detailed description of the XFEL post-linac collima-
tion section together with recently made design modifications. These include among
others: length rearrangement between different subsystems in order to increase op-
tics flexibility, shortening of the length of dipole magnets from 5 m to 2.5 m in order
to reduce number of different magnet types involved in the XFEL design, and in-
troduction of additional small dipoles (0.5 m long) into the arcs of the collimation
system for adjustment of the first-order momentum compaction.

2 System Overview

The part of the beam transport from linac to undulators, which we call the post-

linac collimation section and which is shown in fig.1, starts from the centre of the
last linac quadrupole (cold quadrupole in the last accelerating module) and ends at
the centre of the first quadrupole of the downstream distribution system. It consists
of two arcs (figs. 2 and 3) separated by a straight section (phase shifter, fig.5) and
includes matching modules at both ends (figs. 6 and 7) to adapt the optic to the
desired upstream and downstream beam behaviour.

ENTRANCE
MATCHING
SECTION

EXIT
MATCHING
SECTION

PHASE
SHIFTER

FIRST
ARC

SECOND
ARC

Figure 1: Overall layout of the XFEL post-linac collimation section. Blue, green and
red colors mark dipole, quadrupole and sextupole magnets, respectively.

The collimation section bends the beam in the vertical plane and its length mea-
sured along the curved beam path is 215.31 m, while the projection on the linac axis
gives 215.29 m. The outgoing beam axis points downward with an angle 0.02092◦

and the vertical offset of the centre of the last quadrupole of the second arc from the
linac axis is 2.4 m.

The arcs are almost identical except that in the second arc the polarity of dipole
and sextupole magnets is reversed and dipole bending angles are slightly smaller
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in absolute values in order to produce the net downward beam deflection. Each arc
consists of four 90◦ cells (fig.4), constitutes a second-order achromat and is first-order
isochronous.

All arc quadrupoles (totally 18 quadrupoles in two arcs, each 0.5 m long) have the
same pole tip field, to permit powering them in series, and the sextupoles are powered
in a three-family configuration (totally 24 sextupoles, each 0.25 m long). Bending
magnets are assumed to be rectangular dipoles and each arc features four 2.5 m long
dipoles (main dipoles) for generation of vertical dispersion and four additional weak
0.5 m long dipoles for control of linear isochronicity. Because the net deflection angles
of both arcs are slightly different, powering of dipoles requires four independent power
supplies.

FORWARD CELL

REVERSED CELL

FORWARD CELL

REVERSED CELL

FIRST HALF

SECOND HALF

Figure 2: First arc of the XFEL post-linac collimation section and symmetries of
magnet arrangement.

Figure 3: Second arc of the XFEL post-linac collimation section.

The first arc will collimate transverse positions of incoming particles and the sec-
ond, after a shift of vertical and horizontal betatron phases by odd multiples of 90◦,
their transverse momenta. The energy and vertical plane collimation will be done
simultaneously, and therefore the ratio of dispersion to vertical betatron function
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at collimator locations has to be properly adjusted in order to achieve the required
transverse and energy collimation depths. Because, according to the optics design,
dispersion can not be varied during machine operations, the rough preliminary ad-
justment was made already during design stage by appropriate selection of the arc
parameters, and the operational flexibility will be provided by usage of collimators
with exchangeable apertures and by tuning betatron functions at the collimator lo-
cations.

D1

D2

S1

S2

S3

Q1

Q2

Q3

Figure 4: Forward cell of the first arc. The distance between points marked by
vertical lines is 18 m as measured along curved beam path.

Let us consider the first arc in more detail. The first and the second halfs of this
arc are identical (see fig.2) and have a transfer matrix equal to the minus identity
matrix. This means that input matching conditions are preserved in the arc centre
and at the arc exit. On the other hand, betatron functions at the exit of the forward
cell are inversely proportional to the betatron functions at the arc entrance. That
allows us to increase them in the second half of the forward cell, where the dispersion
is also large, to the values required for the protection of the collimators in the case
of an aberrant beam by reducing incoming betatron functions to sufficiently small
values.

The drawback of this scheme (usage of “mismatched” 90◦ cells) is that a rel-
atively strong focusing field is required in the matching sections and in the phase
shifter. Several approaches to solve this problem1 were considered: usage of long
quadrupoles, usage of short quadrupoles placed next to each other and usage of
short quadrupoles with reduced bore radius [3]. The decision was made to use long
(2 m long) quadrupoles, because the usage of short quadrupoles placed next to each

1According to design specifications the maximum pole tip field for all magnetic elements should
not exceed 1 T at 25 GeV beam energy. Note also that as the minimum space between magnets
we keep a distance 0.5 m and that the length of a magnet means its magnetic length.
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other not only requires additional length, but also makes the chromatic properties
of the system worse, and because the usage of quadrupoles with reduced bore ra-
dius introduces additional limiting apertures into a system, where the most limiting
apertures must be the collimators.

Totally eight 2 m long quadrupoles will be used, two in the entrance and two in
the exit matching sections, and four in the phase shifter. The remaining quadrupoles
in the system straight sections are similar to the arc quadrupoles and are 0.5 m long
(see figs. 5, 6 and 7).

The quadrupoles in the phase shifter are placed symmetrically with respect to the
phase shifter centre, and the same is applicable to their power supply connections.
Thus 15 independent power supplies are required for powering quadrupoles in the
straight sections and, in total, 23 power supplies for powering all magnets of the
entire post-linac collimation system.

Figure 5: Phase shifter. Last quadrupole of the first arc and first quadrupole of the
second arc are also shown. The distance between points marked by vertical lines is
36 m, which is equal to the length of two arc cells.

Figure 6: Entrance matching section. Last linac quadrupole and first quadrupole of
the first arc are also shown. The distance between points marked by vertical lines is
23.34 m.

Figure 7: Exit matching section. Last quadrupole of the second arc and first
quadrupole of the downstream distribution system are also shown. The distance
between points marked by vertical lines is 11.97 m.
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3 Adjustment of Linear Isochronicity

In the design described in the TDR [7] only four dipoles per arc were used
and the linear momentum compaction of the whole collimation system (r56 matrix
coefficient) was approximately equal to −0.8 mm 2, which at that time was considered
as acceptable value. In later studies of the microbunching instability it was found
that even such a small value can not be neglected in the calculation of the gain of
this instability and that, in order to reduce this gain, it is desirable to have r56 of
the collimation section equal to zero or, even better, to bring it to a positive value
of about 0.2 mm [8].

Because some other reasons for the choice of the linear momentum compaction
could appear and it is not completely clear yet, what value of r56 is preferable,
we made system modifications in such a way, that though r56 could not be varied
dynamically during machine operations, no immediate design decision is required.
In any moment, before start of the construction, linear momentum compaction can
be adjusted within about ±1 mm limits while keeping space positions not only of
the system end point and the system straight sections but also of the arc centres
unchanged, as can be seen in fig.8. The design which we describe in this paper
(baseline design) is the first-order isochronous beam line with r56 = 0.
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Figure 8: Changes in the vertical position of the isochronous beam line with r56 = 0,
which are required to bring linear momentum compaction of the collimation section
to the value r56 = −1 mm (red curve) and to the value r56 = +1 mm (green curve).

2The sign and, generally speaking, absolute value of r56 coefficient depend on the choice of
variables used for description of the longitudinal beam dynamics. The exact variables, which we
are using throughout this paper, can be found in Appendix A.
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4 Passive Survival of Collimators

The collimators must be the most limiting apertures in the beam transport line
from the accelerator to the undulators: when a bunch train comes out of the linac
with a large orbit and/or energy error, the collimators should intercept the beam and
should be able to withstand a direct impact of such number of bunches which can be
delivered to their locations until a failure will be detected and the beam production
in the RF gun is switched off.

Taking the response time of the emergency detection electronics tem−detect =
200 ns , the time to switch the RF gun off, tgun−off = 1000 ns , and the length
llinac ≈ 1700 m for the injector and linac, an upper estimate of the number of bunches
nb which can hit the collimator is given by

nb ≤ 1

∆tb
·
(

tem−detect +
llinac + ldet−electr

10−9cs

+ tgun−off +
llinac + lcol−loc

10−9c

)

. (1)

Here ∆tb [ns] is the bunch spacing, c [m/s] is the speed of light, ldet−electr and
lcol−loc [m] are the distances from the linac exit to the detection electronics and to
the collimator location, respectively. As the signal velocity cs [m/s] we will take the
value cs = c / 1.6.

For ∆tb = 200 ns (minimal proposed bunch spacing, see [7]) and the length of
the collimation system approximately equal to 200 m , a collimator has to withstand
an impact of about 80-90 bunches and in the worst, but theoretically still possible,
case all these bunches could hit it exactly at the same point. It means that the
beam size at the collimator has to be blown up using linear optics to reduce the peak
particle density to the level acceptable for the chosen collimator material.3

Several different materials were considered and compared in [9] as candidates
for collimator manufacturing including pyrolitic graphite (carbon), beryllium and
titanium. The interaction of a bunch with a collimator was investigated using the
EGS4 code [10] and was followed by rough stress analysis. The simulation results,
parts of which are shown in figs. 9 and 10, show that the pyrolitic graphite has, as
it is well known, the best survival properties and therefore tolerates the smallest β-
functions at collimator locations (25-30 m). Next comes beryllium with β-functions
of about 110-120 m and titanium alloy (which performs better than pure titanium)
giving tolerable β-functions of about 180-220 m.

Of these choices, we have selected titanium alloy as collimator material for the
same reasons as listed, for example, in [11]: it has a higher conductivity and lower
outgassing than carbon; titanium is less expensive to machine than beryllium (be-
cause beryllium flakes and dust are toxic); titanium is a far more common accelerator
and engineering material and the minimal β-functions which it can tolerate are still
manageable by the proposed optics design.

3The relatively large beam size is needed at the collimator locations not only in order to guarantee
their survival during occasional beam impacts, but also in order to have the possibility to use
collimators with large enough physical apertures.
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Figure 9: Energy deposition in the titanium slab from a single bunch, as a function
of longitudinal position for different beam spot sizes σx = σy = 10, 20, 30, . . . , 210 µm
(upper to lower curves). The interaction of a gaussian bunch (bunch charge - 1 nC)
with a slab was investigated using the EGS4 code, where a beam of 20 GeV electrons
was fired into a 3 radiation length long titanium block. The thickness of the material
is normalized to the radiation length X0 = 3.56 cm.
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Figure 10: Maximal number of bunches (bunch charge - 1 nC) at which the lo-
cal stress created by instantaneous temperature rise due to beam impact nowhere
within a 3 radiation length long collimator made from titanium alloy exceeds the
stress limit as a function of beam size σx = σy = σ (red curve). Blue curve shows
betatron function required to produce an equivalent beam size, assuming normalized
emittances εnx = εny = 1.4 mm · mrad and beam energy - 20 GeV .

11



5 Linear Lattice Functions

According to the system design the arcs are tuned to become second-order achro-
mats and this, together with the fixed system geometry and the requirement of the
first-order isochronicity, completely determines the setting of the arc magnets and
also the behaviour of the linear dispersion function.

Thus modifications of the betatron functions along the collimation section can
be provided only by retuning of quadrupoles in the matching sections and in the
phase shifter. This is not a limitation in our case, because the design of these
sections is done in such a way that with appropriate adjustment of their quadrupoles
we are not only able to provide betatron functions of about 200 m at the points
where the collimators are located (standard collimation optics), but are also able
to translate smoothly the standard collimation optics into an optics with regular
FODO-like transport through the entire collimation section.

This flexibility seems to be an important property of the designed system and
could be extensively used during machine commissioning and/or during measure-
ments of beam parameters. For example, commissioning could start with optics set
to provide regular FODO-like transport and with sextupoles switched off and then,
with experience gained, this optics can be translated step by step into the standard
collimation optics.

Below in this paper we consider in more details the following four setups of the
linear optics in the collimation section (operational modes):

• standard mode (A) : betatron functions of about 200 m at the points where
the collimators are located

• relaxed mode (B) : smaller beta functions (of about 100 m) at the collimator
locations and, therefore, reduced sensitivity to quadrupole errors; can be used
for commissioning or for operations with reduced beam power

• FODO-like transport (C) : FODO-like transport through the arcs of the col-
limation section, but with betatron phases still changed by odd multiples of
90◦ in the phase shifter; has good chromatic properties already with sextupoles
switched off

• FODO-like transport (D) : FODO-like transport through the entire collimation
section; in comparison with mode C, only three quadrupoles from nine in the
phase shifter are switched on; has the lowest sensitivity to quadrupole errors

Betatron functions corresponding to these operational modes can be seen in figs. 11
and 12, and the linear dispersion, which is independent from setting of quadrupoles
in the matching sections and in the phase shifter, is shown in fig.13. Note that in
these and in all following later plots the symbol x denotes motion in the bending
plane of our system, i.e., instead of the system deflecting in the vertical plane, it is
more convenient for us to study the system rotated by 90◦ and thus deflecting in the
horizontal plane.
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Figure 11: Betatron functions along the XFEL post-linac collimation section corre-
sponding to operational modes A (top) and B (bottom).
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Figure 12: Betatron functions along the XFEL post-linac collimation section corre-
sponding to operational modes C (top) and D (bottom).
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Figure 13: Dispersion function along the XFEL post-linac collimation section.

6 Details of First and Second Order Optics Design

The optics of the collimation section has to satisfy simultaneously two different
and partly conflicting requirements. Large beam spot size requested at the colli-
mator locations and, in the same time, the possibility to transport bunches with
different energies (up to ±1.5% from nominal energy) while preserving with good ac-
curacy energy independent input and output matching conditions4, make the control
of chromatic effects one of the main issues in the design of the optics in the collima-
tion section. Without correction the chromatic aberrations are unacceptable as can
be seen in fig.145 and, therefore, introduction of chromaticity correcting sextupoles
becomes essential in improving overall system performance.

4We assume that the matching conditions at the linac exit stay fixed while the beam energy
changes within ±1.5% limits (it does not look to be a problem to organize small energy variations
in the linac while preserving output betatron parameters, because the linac focusing structure is a
regular sequence of 60◦ FODO cells). As concerning beam transport downstream of the collimation
section, the downstream system must be capable of transporting beams with energy offset to un-
dulators and through undulators starting from initial conditions which also are energy independent
and, nevertheless, retaining beam parameters required for the FEL process. Thus the collimation
section, as a part of the transport line from accelerator to undulators, should be able to work
as a matching section connecting (with good accuracy within ±1.5% limits) energy independent
upstream and downstream betatron parameters.

5All tracking results presented in this paper are shown for the beam energy equal to 17.5 GeV

and normalized emittances εnx = εny = 1.4 mm · mrad.
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Figure 14: Phase space portraits of monochromatic 3σx,y ellipses (matched at the
entrance) after tracking through the entire collimation section. The relative energy
deviations are equal to −1.5%, 0% and +1.5% (red, green and blue ellipses, respec-
tively). Optics A, B and C (from top to bottom) with sextupoles switched off.
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There are different approaches to the problem of compensation of chromatic ef-
fects, and the first try was to use sextupoles at locations of nonzero dispersion for
correction of chromatic aberrations in the transfer map of the entire collimation sec-
tion. It was considered as unsuccessful for the following reasons. Firstly, according
to the formulas (66) and (88), it is, in general, impossible to make all linear chro-
matic aberrations and the second order dispersions vanish simultaneously without
linear position and linear angular dispersions (r16 and r26 matrix elements) equal
to zero at the arc centres, which gives additional constraints for the linear optics
design and, in practice, means introduction of additional quadrupoles into the arc
structures. Secondly, even with linear dispersions corrected to zero at the arc centers,
the sextupoles has to be retuned whenever the decision is made to change the setting
of quadrupoles in the matching sections and in the phase shifter. Finally, besides
all of that, in all our attempts to rearrange the linear lattice design the sextupole
strengths required for reduction of chromatic aberrations to an acceptable level were
too large and dynamics was spoiled not by chromatic effects but by higher order
nonlinearities.

The second attempt was to use sextupoles to compensate chromatic dependence
of betatron parameters on energy variations for the particular matching conditions
given at the linac exit. But, as it was found, it is insufficient to correct only beta and
alpha functions. The energy dependence of phase advances also has to be corrected,
at least between collimator locations, because otherwise it leads to nonnegligible
reduction of collimator apertures (see fig.23 in the next section). With this addi-
tional requirement the problem becomes practically equivalent to the problem of the
transfer map correction and, therefore, suffers from the same difficulties.

The solution, which we found to be most adequate to the design requirements,
is, in some sense, a combinations of the two above approaches. We compensate the
arc chromatic effects in the maps by tuning arcs to become second-order achromats.
Reduction of chromatic aberrations in the system straight sections is done for the
particular betatron functions transported through these parts and without involving
sextupole fields, simply by an accurate drift-quadrupole optics design. Let us discuss
this solution in more detail.

There are two symmetries of the arrangement of the arc dipole and quadrupole
magnets, which can be seen in fig.2 and which can be used in order to make the arc an
achromat. The first is the four-cell symmetry of the type FRFR, where the forward
cell (F) is followed by reversed cell (R) and then this two-cell configuration is repeated
once more. The second symmetry is to consider the arc simply as an repetition
of two identical cells (FF symmetry). The symmetry FF requires 6 independent
sextupole families to be used in order to achieve a second order achromat while
with the symmetry FRFR only 4 independent sextupole families are needed (consult
Appendices B and C for theoretical details). But because one has to put sextupoles
into the arc in such a way that the symmetry is preserved, the minimum number of
sextupoles required for one arc is 16 for the symmetry FRFR and only 12 for the
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symmetry FF.
The first decision made was to set arc quadrupoles according to the symmetry

FRFR because with conditions (50) fulfilled6 the first order requirements of the
symmetry FF will be satisfied too, and then make an accurate search for an optimal
sextupole configuration. With a specially written program it was found that for the
best solutions the integrated sextupole field is about the same for both symmetries
and that, more important, the maximal value of the sextupole strengths in these
solutions is also about the same. This makes the usage of FF symmetry definitely
preferable, because less sextupoles are required. The second optimization step was
the attempt to reduce the integrated sextupole field, maximal sextupole strength
and number of independent sextupole families while keeping chromatic aberrations
to an acceptable level. The good practical solution uses 12 sextupoles per arc; the
sextupoles are introduced into the arcs according to the symmetry FRFR and are
powered in a three-family configuration (all 24 sextupoles of both arcs) following the
same symmetry; the integrated sextupole field is reduced by 25% and the maximal
sextupole strength is smaller by 30% as compared to the best solutions given for the
theoretically perfect second-order achromats.

As concerning design of the system straight sections (figs. 5, 6 and 7), it is known
that though a straight drift-quadrupole system can not be made an achromat (see,
for example, [12, 13, 14]), it can be made a second-order apochromat with respect
to certain incoming beam ellipses, i.e. it can transport these beam ellipses (envelope
functions) without introducing first-order chromatic distortions.7 In practice, we
did not try to make straight sections to become theoretically perfect second-order
apochromats. The problem was considered as a matching problem with additional
constraints, which were the reductions of apochromatic aberrations to an acceptably
small level. With the help of a specially written program the number of quadrupoles
in the phase shifter and in the entrance and exit matching sections, and the distances
between these quadrupoles were carefully selected in order to be able to cover all ex-
pected ranges of the betatron parameters while preserving good chromatic properties
of the beam transport. Note that because the phase shifter has to provide a shift of
vertical and horizontal betatron phases by odd multiples of 90◦ and because its en-
trance and exit beta functions are equal to each other for all operational modes with
alpha functions always equal to zero, we arranged its quadrupoles mirror symmetric
and thus have reduced the number of independent apochromatic aberrations from
four to two.

The price paid for the usage of (interleaved) sextupoles to correct chromatic aber-

6Four independent parameters are required in order to satisfy conditions (50) and to make
diagonal elements of the forward cell matrix equal to zero. One may choose as such parameters
three quadrupole gradients plus, for example, shift of the Q2 quadrupole (see fig. 4) away from
the cell center. Because focusing asymmetry introduced by dipole magnets is very weak, the good
practical solution can be obtained using absolute value of quadrupole gradients as a single fitting
parameter. This permit to power all quadrupoles of both arcs using only one power supply.

7Following [15] we have found convenient to use the term apochromat for such type of focusing.
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rations is, as usual, some increase of the effect of high-order nonlinearities (see fig.15),
which does not look to be a serious problem. Note that the tracking result shown in
the bottom of fig.15 was obtained with both, x and y, offsets being simultaneously
nonzero at the system entrance. One may compare this with the tracking result
shown in fig.16, where, at the system entrance, particles had only horizontal or only
vertical offset from the beam axis. The effect of energy offsets, optics nonlinearities
and transverse beam offsets at the system entrance on the evolution of the beam
spot size along the collimation section can be seen in fig.17

The resulting performance of the entire post-linac collimation section with respect
to the beam energy change fulfills the design specification and can be seen in figs.
18 and 19.
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Figure 15: Results of particle tracking with nominal energy through the entire col-
limation section. At the entrance these particles were uniformly distributed on the
three 4-dimensional surfaces which in projections on horizontal and vertical planes
form matched 10σx,y, 20σx,y and 30σx,y ellipses (red, blue and magenta colors, re-
spectively). Optics A with sextupoles switched off (top) and on (bottom).
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Figure 16: Results of particle tracking with nominal energy through the entire col-
limation section. At the entrance these particles were uniformly distributed on the
perimeters of the six matched two-dimensional ellipses. 10σx, 20σx and 30σx ellipses
with y, py coordinates equal to zero, and 10σy, 20σy and 30σy ellipses with x, px

coordinates equal to zero. Optics A with sextupoles switched on.
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Figure 17: Evolution of beam spot size (
√

σxσy) along the collimation section. Red
curve shows the design spot size (linear theory). All other curves are results extracted
from the tracking simulations. A matched Gaussian beam at the entrance with −3%
(blue) and +3% (green) energy offsets, with 40σx-offset (black), and with both −3%
energy and 40σx-offsets (magenta). Optics A with sextupoles switched on.
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Figure 18: Phase space portraits of monochromatic 3σx,y ellipses (matched at the
entrance) after tracking through the entire collimation section. The relative energy
deviations are equal to −1.5%, 0% and +1.5% (red, green and blue ellipses, respec-
tively). Optics A, B and C (from top to bottom) with sextupoles switched on.
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Figure 19: Phase space portraits of monochromatic 3σx,y ellipses (matched at the
entrance) after tracking through the entire collimation section. The relative energy
deviations are equal to −3.0%, 0% and +3.0% (red, green and blue ellipses, respec-
tively). Optics A, B and C (from top to bottom) with sextupoles switched on.
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7 Estimate of Required Collimator Apertures

The goal of the post-linac collimation system is to confine at its exit all particles
which passed the collimation section freely (without touching collimator apertures)
into such volume in phase space (downstream dynamic aperture), that can be
safely transported through all downstream beamlines including undulator modules
to the beam dumps, and to keep the number of secondary and rescattered particles
which appear outside of the downstream dynamic aperture to an acceptably small
level. Besides that it is desirable to avoid uncontrolled impacts of the particles
coming from the linac (primary particles) onto the beam pipe in the collimation
section, which can lead to beam pipe damage if the whole beam is off-energy and/or
mis-steered.

Three different types of collimators are foreseen to be used in the XFEL post-
linac collimation system to accomplish these tasks: main primary collimators, sup-
plementing primary collimators and secondary collimators (absorbers). The principal
purpose of the main primary collimators is to intercept trajectories of all primary
particles which would otherwise appear outside of the downstream dynamic aper-
ture. The main collimators will also shade a part of the beam pipe in the collimation
section (but not all) from uncontrolled beam impacts. Supplementing primary col-
limators assist to accomplish this work or, at least, reduce the probability of such
events. In the same time the supplementing collimators should not affect the trans-
verse and energy collimation depths set by the main collimators. To improve the
overall cleaning efficiency at the exit and better localize losses inside of the collima-
tion section several absorbers placed in the shadow of the primary collimators will
be used.

It is not the intention of this paper to make a systematic search for a good
combination of all three types of collimators, all the more that not all input data
needed for such optimization are still available (for example, not all details of the
hardware design which will define the exact inner shape of the downstream vacuum
chamber at current stage of the project are finalized yet). Instead we concentrate
on the study of the main primary collimators whose number and locations can be
chosen more or less independently from locations of other collimator types and from
fine details of the hardware design.

The current proposal is that four main collimators made from titanium alloy will
be used, two in each arcs (see figs. 20 and 21). Similar to the collimators which are
currently in use at the FLASH facility8 they will have round inner apertures and the
possibility to interchange between three different aperture radii by an appropriate
mechanics. Exchangeable apertures combined with the possibility of tuning betatron
functions at the collimator locations will allow to regulate transverse and energy col-
limation depths separately (within some limits), despite the fact that collimators are

8Optics design of the FLASH post-linac collimation section can be found in [16] and some details
of the mechanical collimator design are presented in [7].
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Figure 20: Locations of the main primary collimators in the XFEL post-linac colli-
mation section.
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Figure 21: Location of the main primary collimator in the forward cell of the first
arc.

placed in the dispersive region of the beamline. This gives an additional operational
flexibility to the post-linac collimation system.

The main purpose of the studies presented below is not to define the set of
apertures for each collimator already as the final recommendation for the manufac-
turing. Instead we show that these four collimators are capable of providing such
phase space limitations at the exit of the collimation section which are sufficient for
the protection of the undulator modules and other downstream equipment against
off-momentum and large amplitude halo particles and also against miss-steered and
off-energy beams. Note that during our investigations we have used software and
algorithms developed for the study of the collimator system of the FLASH facility
[16].
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In order to avoid possible misinterpretation of the calculation results, let us first
define accurately all components which were actually used for the estimation of the
effect of the collimators on the particle phase space at the exit of the collimation
section.

Distribution of incoming particles. The distribution of the particles coming
into the collimation section was modeled by a set of monochromatic 4-dimensional
170-σ distributions9 each filled with 5 ·105 particles. This distribution, in the projec-
tion on the real space, does not cover all vacuum chamber aperture at the collimation
section entrance, but is sufficient for the study of the effect of the collimators on the
particle phase space at the collimation section exit (but is, in general, insufficient
for the study of the protection of the beam pipe inside collimation section), as was
shown by special additional investigations. The main reason to do such additional
investigations instead of simple usage of larger number of sigmas, was the desire to
have a large enough number of particles per unit volume while keeping the total
number of particles in reasonable limits.10

Particle tracking algorithm. As particle tracking algorithm the symplectic nu-
merical integration of the Hamiltonian equations of motion in the SCOFF11 ap-
proximation was used. Thus geometrical and chromatic aberrations were taken into
account, but possible effects of extended fringing fields were not included and will
be estimated later on, when we will have more or less realistic fringing field profiles
(below we will see how strongly the sextupole magnets affect the size of the collima-
tor apertures required for the undulator protection, and, because extended fringing
fields introduce additional nonlinearities into the system, they also could be of some
importance for the motion of particles which will have large transverse offsets at the
collimation system entrance). Note that the beam dynamics code which we used for
tracking is capable of simulating extended fringing fields of multipole magnets [17].

Model of collimators. In the studies presented in this paper we have used the
“black absorber” model for the collimators - any particle touching them is considered
as lost. All four collimators were assumed to be identical with the length equal to
20 cm12 and with a circular hole as the shape of the inner collimating tube.

Criteria for undulator to be protected. At the current stage we do not track
the particles which safely passed the collimation section further through all down-
stream beamlines, but instead check them at the exit of the collimation system and

9As 4-dimensional n-σ distribution we understand the distribution in which (x, px) and (y, py)
particle coordinates are generated independently so as to populate uniformly the interior of n-σx

and n-σy matched ellipses, respectively.
10With fixed number of particles per unit volume the total number of particles in the n-σ distri-

bution is proportional to n4.
11SCOFF stands for Sharp Cut-Off Fringing Field.
12When the collimators are considered as black absorbers, the dependence of the calculated

apertures on the collimator length is relatively weak (for related discussions see [16]).
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if even one lies outside of the matched ellipses
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x = Jx
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y = Jy

(2)

then a protection failure is recorded.
The constants Jx and Jy in (2) are connected with the undulator parameters

according to the formulas

Jx =
r2

und

2βx,max

, Jy =
r2

und

2βy,max

, (3)

where rund is the radius of the undulator vacuum chamber13, and βx,max and βy,max

are the maximum values of the betatron functions along the undulator.
In the following we will assume that βx,max = βy,max = 30 m and, instead of

introducing the safety factor into (3) explicitly, will consider several different values
for the radius rund = 5, 4, 3 and 2 mm.

For the tracking calculations we use the beam energy equal to 17.5 GeV and nor-
malized emittances, εnx and εny, equal to 1.4 mm ·mrad. For these beam parameters
the radii rund = 5, 4, 3 and 2 mm correspond to approximately 100, 80, 60 and 40
beam sigmas (simultaneously for both planes, x and y) at the exit of the collimation
system, respectively.

Calculation procedure. When the value of rund in (3) and, therefore, in (2)
is fixed, it is possible to begin the search of the maximum allowed aperture of the
collimators (aperture which separates apertures which can protect the undulator
vacuum chamber from those which can not). This search was performed using the
method of bisection and separately for each monochromatic portion of the incoming
170-σ particle distribution, so that the results can be presented as a function of the
energy deviation.

In part of the calculations we have used an additional requirement to avoid losses
of the primary particles on the beam pipe downstream of the first collimator. In
these calculations the beam pipe radius was set to the value 25 mm, and in all other
calculations the effect of the beam pipe on the particle dynamics between collimators
was not taken into account.

Some curves, obtained for the case when sextupole magnets are switched on,
change their shape quite rapidly in certain regions of the energy offsets (see, for
example, region between −8% and −4% relative energy deviations in fig.24). No
determination was made as to whether these effects are due to actual (chromatic
and geometrical) nonlinearities of the system or due to the fact that the number of

13The actual undulator vacuum chamber will have elliptical cross-section with the most limiting
apertures being the radiation absorbers [7]. So as rund we, in fact, will understand throughout this
paper the radius of the cylinder which could be inscribed inside the undulator vacuum chamber.
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particles per unit volume in the incoming distribution is still not large enough (or
due to combination of both). Instead of that, after completion of the calculations, we
set the collimator apertures to the value which is slightly smaller than the minimum
obtained within the considered region of the energy offsets, and check that this value
of the aperture radius is capable of providing undulator protection by tracking again
through the system a set of monochromatic 170-σ distributions, but populated now
with 5 · 106 particles.

The first figure presenting the calculation results shows the aperture radius re-
quired to block the corresponding off-energy fraction of incoming particles in the
collimation section (red curve in fig.22). Because collimator pairs within each arc
are separated by a minus identity transformation in the betatron space and all col-
limators have identical apertures, the linear theory predicts that for small energy
deviations this curve should follow the line a· | ε | , where

a =
1

2
· max (| D1 + D2 |, | D3 + D4 |) ≈ 10 cm ,

Dn is the value of the linear dispersion at the n-th collimator location and ε is the
relative energy deviation. It is indeed the case (see blue curve at the same figure)
and, therefore, one has to set the aperture radii approximately to the value N mm
in order to be able to stop in the collimation section all particles with the energy
offsets outside of the ±N% region.

The positive effect of sextupoles on the increase of the collimator apertures re-
quired for protection of the undulator vacuum chamber can be seen in fig.23. Let us
look more closely at the magenta curve in this figure, i.e. at the case when sextupoles
are switched off. Though, for the nominal energy, the calculated aperture coincides
with good precision with the prediction of the linear theory, it drops down almost
twice due to strong dependence of betatron parameters on energy variations when
the energy offset becomes nonzero. The sextupoles remove part of this chromatic
dependence and thus allow to use collimators with larger radii for the protection of
the undulator vacuum chamber.14

Figs. 24 and 25 show aperture radii calculated for two different optics (optics A
and optics B, respectively). Because in the optics A the betatron functions at the
collimator locations are exactly two times larger than in the optics B, the expectation
from the linear theory is that the ratio of minimums of curves from these two figures
corresponding to the same value of rund should be equal to

√
2 (≈ 1.41). The real

drop of apertures is smaller and changes from 1.14 to 1.26 when rund decreases from
5 to 2 mm, which reflects the nonlinear properties of the collimation section.

14It does not seem that nonlinear transfer properties of the collimation system require any es-
sential improvements. Nevertheless, it will be interesting to see in the later studies if the usage of
octupoles can bring collimator apertures close to the estimation following from the linear theory
than in the case when only sextupoles are used.
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Figure 22: Red curve: aperture radius required to block the corresponding off-energy
fraction of incoming particles in the collimation section. Blue curve: analytical
estimate for this radius made using linear dispersion at the collimator locations.
Optics A with sextupoles switched on.
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Figure 23: Aperture radius required to protect the undulator vacuum chamber
(rund = 4 mm) as a function of the energy deviation. Optics A with sextupoles
switched off (magenta curve) and on (blue curve).
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Figure 24: Aperture radius required to protect the undulator vacuum chamber as
a function of the energy deviation for different values of the radius of the undula-
tor vacuum chamber rund = 5, 4, 3, 2 mm (upper to lower curves). Optics A with
sextupoles switched on.
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Figure 25: Aperture radius required to protect the undulator vacuum chamber as
a function of the energy deviation for different values of the radius of the undula-
tor vacuum chamber rund = 5, 4, 3, 2 mm (upper to lower curves). Optics B with
sextupoles switched on.
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Figure 26: Blue curve: aperture radius required to protect the undulator vacuum
chamber (rund = 3 mm) as a function of the energy deviation. Red curve: aperture
radius required to block the corresponding off-energy fraction of incoming particles
in the collimation section. Optics A with sextupoles switched on.

Let us set the collimator radii to the value rcol = 3 mm, which is required to
protect the undulator vacuum chamber with rund = 3 mm (equality rcol = rund is
accidental), and look in more details on the phase space limitations at the exit of
the collimation system provided by these collimator apertures. When collimators
are considered as the black absorbers, all particles with the relative energy devia-
tion smaller than about −2.9% or larger than about +3.0% will be stopped in the
collimation section completely, as can be concluded from the plot shown in fig.26.
In the transverse phase space, no of particles should appear outside of the region
bounded by ≈60σx and ≈60σy ellipses, because they are, in fact, the target ellipses
set at the exit of the collimation system corresponding to the choice rund = 3 mm for
the undulator vacuum chamber. But, in the presence of dispersion at the collimator
locations, the collimators will no longer cut the transverse phase space for all values
of energy offset to the same degree, and, in the presence of sextupoles, this cut could
be different for two transverse planes even for the nominal energy, as one can see
in fig.27. The characterization of the transverse phase space obtained with the help
of tracking simulations is presented in figs. 28 and 29. Note that curves in fig.29
show substantial difference between two collimation depths for the non-bending plane
motion around nominal beam energy: calculated numerically and predicted by the
linear theory. This is an important fact and it is better to consider these results as
preliminary and to check them once more using larger number of particles or/and
different calculation algorithm.
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Figure 27: Results of the tracking of monochromatic 170-σ particle distributions
through the entire collimation section. The relative energy deviations are equal to
−1.5%, 0% and +1.5% (from top to bottom). The main primary collimators have
aperture radii 3 mm. The target ellipses (red curves, ≈60σx and ≈60σy ellipses)
correspond to rund = 3 mm. Optics A with sextupoles switched on.
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Figure 28: Number of sigmas (n) which separates corresponding monochromatic
m-σ distributions into two classes: all m-σ distributions with m < n will pass the
collimation section freely, but among particles from any m-σ distribution with m > n
there exists at least one particle whose trajectory will be intercepted by one of the
collimators. The main primary collimators have aperture radii 3 mm. Optics A with
sextupoles switched on.
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Figure 29: Minimal numbers of sigmas, nx and ny (red and blue curves), such that
all particles, which have corresponding energy deviation and were able to pass the
collimation system freely, lie inside nxσx and nyσy ellipses. Analytical estimates for
nx and ny following from the linear theory are shown by pink and light-blue curves,
respectively. The main primary collimators have aperture radii 3 mm. Optics A with
sextupoles switched on.
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It is not the subject of this paper to make a detailed study of the possibilities
to protect the beam pipe inside the collimation section against impacts of primary
particles. But, nevertheless, let us take a quick look at it, limiting ourselves to a
consideration of incoming particles only from a 170-σ initial distribution with energy
offsets within −15% and +10% limits. Fig.30 shows that the problem can not be
solved simply by some reduction of the apertures of the main primary collimators,
because the aperture radius required for the beam pipe protection not only becomes
almost equal to zero for relatively large negative energy offsets, but also drops down
in the neighbourhood of the nominal energy to about 0.2 mm. Fig.31 tells us that
all particles which were able to hit the beam pipe between collimators are at large
betatron amplitudes at the entrance of the collimation section. So one may intercept
them using additional, suitably located collimators working at apertures larger than
the apertures of the main collimators, and figs. 32 and 33 give an example showing
that this really can be done.

8 Summary

The optics solution offered in this paper for the XFEL post-linac collimation
section meets all design specifications. It is capable of providing simultaneously a
large beam spot size at the collimator locations and, in the same time, to transport
bunches with different energies (up to ±1.5% from nominal energy) while preserv-
ing with good accuracy energy independent input and output matching conditions.
These criteria are met by designing a magnetic system whose second-order chromatic
and geometric aberrations are controlled by the symmetry of the first-order optics
and sextupole fields.

The system uses four main primary collimators and the studies presented in this
paper show that these collimators are able to confine all particles which passed the
collimation section freely (without touching collimator apertures) into a volume in
the phase space, which can be safely transported through all downstream beamlines
including undulator modules to the beam dumps.

In the next steps the set of exchangeable apertures (2 or 3 apertures) for the main
primary collimators has to be defined, and the question concerning the number and
locations of the supplementing primary collimators and secondary collimators has to
be considered. Furthermore, the performance of the complete system in the presence
of imperfections and with secondary and rescattered particles taken into account has
to be studied.
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Figure 30: Red curve: aperture radius required to protect the undulator vacuum
chamber (rund = 3 mm) as a function of the energy deviation. Blue curve: with
additional requirement to have no uncontrolled losses of particles from initial 170-σ
distribution on the beam pipe downstream of the first main collimator. Beam pipe
radius is equal to 25 mm. Optics A with sextupoles switched on.
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Figure 31: Number of sigmas (n) which separates corresponding monochromatic m-σ
distributions into two classes: particles from all m-σ distributions with m < n are
not able to touch the beam pipe inside collimation section downstream of the first
main collimator, but among particles from any m-σ distribution with m > n there
exists at least one particle whose trajectory will hit the vacuum chamber downstream
of the first main collimator. The main collimators have aperture radii 3 mm. Beam
pipe radius is equal to 25 mm. Optics A with sextupoles switched on.
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Figure 32: Example of location of three supplementing primary collimators in the
XFEL post-linac collimation section.
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Figure 33: Aperture radius of the supplementing collimators (located as shown in fig.
32) required to protect the beam pipe downstream of the first supplementing colli-
mator as a function of the energy deviation. Beam pipe radius is equal to 25 mm and
the main collimators have aperture radii 3 mm. Optics A with sextupoles switched
on.
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A Equations of Motion and Transfer Matrices

Because various authors use various variables for the treatment of fully coupled
transverse and longitudinal motion, the purpose of this appendix is to define exactly
the variables and to write down equations of motion corresponding to these variables,
which we use throughout this paper for analytical calculations and for numerical
tracking. More details can be found in [18].

Besides that we bring together useful properties of transfer matrices of systems
with symmetries collected from different literature [19, 20, 21, 22, 23].

A.1 Hamiltonian for the Motion of a Charged Particle

in a Mid-Plane Symmetric Magnetic Field

As usual, we assume that the motion of a particle takes place in the vicinity of
a given curve (reference orbit) which lies in the symmetry plane and use a set of
curvilinear coordinates x, y, z of which the z-axis is tangent to this curve pointing in
the direction of beam motion, x-axis lies in the symmetry plane and measures the
distance normally from the reference orbit, and y-axis completes the set to form a
right handed orthogonal coordinate system. When we take the path length along the
reference orbit τ as independent variable, the Hamiltonian describing the motion of
a particle can be written as

H(x, px, y, py, σ, ε) =

ε − (1 + hx)







√

√

√

√

√(1 + ε)2 −


(px − Ax)2 + (py − Ay)2 +

(

ε

γ0

)2


 + Az





 , (4)

where h(τ) is the horizontal curvature of the reference orbit, measured as positive if
the reference orbit bends in the direction opposite to that of the x−axis.

The canonical variable pairs are

(x, px), (y, py), (σ, ε), (5)

where px and py are transverse canonical monenta scaled with the constant kinetic
momentum of the reference particle p0.

The variables σ and ε which describe longitudinal dynamics are

σ = c β0 (t0 − t) = v0 (t0 − t) (6)

and

ε =
1

β2
0

· E − E0

E0

=
1

β2
0

· γ − γ0

γ0

=
1

β2
0

· β0 | ~p | − β p0

β p0

. (7)
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Here E0 and t0 = t0(τ) are the energy of the reference particle and its arrival time
at certain position τ , and the values of p0 , γ0 and β0 are defined as follows

p0 =

√

(E0

c

)2

− m2
0 c2 = m0 c

√

γ2
0 − 1 = m0 c γ0 β0 =

β0 E0

c
. (8)

Note that variable σ is positive for particles which arrived at certain po-

sition τ before the reference particle, i.e. for the head of the bunch.

To obtain a Taylor expansion of the Hamiltonian (4) one needs the Taylor ex-
pansions of the components of the magnetic vector potential Ax, Ay and Az to be
known. The coefficients in these expansions will depend on the coefficients in the
magnetic field expansion but are not completely determined by them owing to the
fact that one can add the gradient of an arbitrary scalar function to the vector po-
tential without changing the magnetic field. In this paper we use the vector potential
which satisfies additional gauge condition Ay = 0 and can be expanded as follows
(for a more general discussion see, for example, [24])

Ax =3 k′

0

x2 − y2

2
+ (k′

1
− hk′

0
)
x3 − 3xy2

6
− (h′k0 + 3hk′

0
)
x3

6
, (9)

Ay =3 0 , (10)

and

Az =4 −k0 x + hk0

x2

2
− k1

x2 − y2

2
− k2

x3 − 3xy2

6
+ (k′′

0
− 3h2k0 + hk1)

x3

6
−

k3

x4 − 6x2y2 + y4

24
+ (k′′

1 + hk2 − h′k′

0 − h2k1 − 2hk′′

0)
x4 − y4

24
+

(12h3k0 − h′′k0 − 6hk′′

0
− 3h2k1 − 4h′k′

0
)
x4

24
. (11)

Here =n means equality up to order n , prime denotes differentiation with respect
to variable τ and multipole coefficients kn(τ) are given by the following formula

kn(τ) =
e

p0

(

∂nBy

∂xn

)

x=y=0

, (12)

where By = By(τ, x, y) is the vertical component of the magnetic field vector.
With this particular form of the vector potential the expanded Hamiltonian be-

comes

H =4 H1 + H2 + H3 + H4 , (13)
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where

H1 = (k0 − h) x , (14)

H2 =
1

2



p2

x + p2

y +

(

ε

γ0

)2


 − hxε + hk0

x2

2
+ k1

x2 − y2

2
, (15)

H3 =
hx − ε

2



p2

x + p2

y +

(

ε

γ0

)2


 + k2

x3 − 3xy2

6
−

k′

0

x2px − pxy
2

2
− k′′

0

x3

6
+ hk1

2x3 − 3xy2

6
, (16)

and

H4 =
1

8



p2

x + p2

y +

(

ε

γ0

)2




2

− ε
hx − ε

2



p2

x + p2

y +

(

ε

γ0

)2


 +

k3

x4 − 6x2y2 + y4

24
+

1

2
(k′

0)
2

(

x2 − y2

2

)2

+ (h′k0 + 3hk′

0)
x3px

6
−

(k′

1 − hk′

0)
x3px − 3xpxy

2

6
+ k′

0

x2pxε − pxy
2ε

2
−

hk′

0

x3px − xpxy
2

2
− (k′′

1 + hk2 − h′k′

0 − h2k1 − 2hk′′

0)
x4 − y4

24
+

hk2

x4 − 3x2y2

6
− (9h3k0 − 5hk′′

0 − h′′k0 − 2h2k1 − 4h′k′

0)
x4

24
. (17)

Note that throughout this paper we will also assume that k0(τ) ≡ h(τ) and
that h(τ) · kn(τ) ≡ 0 for n > 0 (all magnets are separate function type).

A.2 Matrix of Static Magnetic System with Midplane

Symmetry and its Dispersion Decomposition

The transfer matrix MF of a magnetic system which is built from optical
elements such that they are symmetric about the horizontal midplane y = 0
satisfy

T−1

M · MF · TM = MF , (18)
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where

TM = T−1

M =





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





















. (19)

From (18), time-independence, energy conservation and symplecticity it follows that
a matrix MF of the static magnetic system which is symmetric about horizontal
midplane has the following general form

MF =





















r11 r12 0 0 0 r16

r21 r22 0 0 0 r26

0 0 r33 r34 0 0
0 0 r43 r44 0 0

r51 r52 0 0 1 r56

0 0 0 0 0 1





















, (20)

where, due to symplecticity, the elements rnm must satisfy







































r11r22 − r12r21 = 1
r33r44 − r34r43 = 1
r21r16 − r11r26 = r51

r22r16 − r12r26 = r52

r11r52 − r12r51 = r16

r21r52 − r22r51 = r26

(21)

The matrix elements r16 and r26 are called horizontal position and horizontal
angular dispersions respectively.

If trx = r11 + r22 6= 2 then the matrix MF can be transformed into dispersion
free form N(MF ) with the help of the symplectic dispersion transformation D(MF )

MF = D(MF ) · N(MF ) · D(MF )−1 . (22)

Here

N(MF ) =





















r11 r12 0 0 0 0
r21 r22 0 0 0 0
0 0 r33 r34 0 0
0 0 r43 r44 0 0
0 0 0 0 1 C
0 0 0 0 0 1





















, (23)
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D(MF ) =





















1 0 0 0 0 A
0 1 0 0 0 B
0 0 1 0 0 0
0 0 0 1 0 0

−B A 0 0 1 0
0 0 0 0 0 1





















def
= I + DN (MF ) , (24)

and

A =
r16 − r52

2 − r11 − r22

, B =
r26 + r51

2 − r11 − r22

, C = r56 +
r16r51 + r26r52

2 − r11 − r22

. (25)

Because A and B defined by the above formulas satisfy
(

r11 r12

r21 r22

)

·
(

A
B

)

+

(

r16

r26

)

=

(

A
B

)

, (26)

they are nothing else as initial conditions for periodic (matched) dispersion functions.
Note that the matrix DN(MF ) is nilpotent (DN (MF )2 = 0 ) and thus

D−1(MF ) = (I + DN(MF ))−1 = I − DN(MF ) . (27)

Note also that the dispersion transformation can be represented in the form of a Lie
operator as follows

: D(MF ) : = exp(: ε · (B · x − A · px) :) . (28)

A.3 Matrix of Reversed Cell and Matrices

of Two-Cell Systems

The matrix of the cell which is mirror symmetric about x−y plane to the original
(forward) cell is given by

MR = TR · M−1

F · TR , (29)

where TR is the reversion transformation matrix.

TR = T−1

R =





















1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1





















and T 2

R = I . (30)

It should be noted that the reflection operation is involutory as would be expected,
i.e.

(MR)R = TR · M−1

R · TR = TR · (TR · M−1

F · TR)−1 · TR = MF . (31)
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If the forward cell is a magnetic system which is symmetric about horizontal
midplane, then

MR =





















r22 r12 0 0 0 −r52

r21 r11 0 0 0 −r51

0 0 r44 r34 0 0
0 0 r43 r33 0 0

−r26 −r16 0 0 1 r56

0 0 0 0 0 1





















. (32)

Forward Cell Followed by Reversed Cell

Consider a magnet system with transfer matrix MF followed by its mirror
reflected system with transfer matrix MR . For this combination one obtains

MFR
def
= MR · MF =





















1 + 2r12r21 2r12r22 0 0 0 2r12r26

2r21r11 1 + 2r12r21 0 0 0 2r11r26

0 0 1 + 2r34r43 2r34r44 0 0
0 0 2r43r33 1 + 2r34r43 0 0

−2r11r26 −2r12r26 0 0 1 2(r56 − r16r26)
0 0 0 0 0 1





















. (33)

If one will consider this two-cell system as continuous system with the length of
the forward cell equal to lc , then the following relation holds

MFR(lc + τ) = TR · MFR(lc − τ) · M−1

FR(lc) · TR · MFR(lc) . (34)

Let r̃km(τ) be the elements of the matrix MFR(τ) · M−1

FR(lc). Rewriting (34) in
the form

MFR(lc + τ) · M−1

FR(lc) = TR ·
(

MFR(lc − τ) · M−1

FR(lc)
)

· TR (35)

we have that

r̃11, r̃16, r̃22, r̃33, r̃44, r̃52 (36)

are even and

r̃12, r̃21, r̃26, r̃34, r̃43, r̃51, r̃56 (37)

are odd functions with respect to the point τ = lc.
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Reversed Cell Followed by Forward Cell

MRF
def
= MF · MR =





















1 + 2r12r21 2r12r11 0 0 0 −2r12r51

2r21r22 1 + 2r12r21 0 0 0 −2r22r51

0 0 1 + 2r34r43 2r34r33 0 0
0 0 2r43r44 1 + 2r34r43 0 0

2r22r51 2r12r51 0 0 1 2(r56 − r51r52)
0 0 0 0 0 1





















. (38)

Two-Periodic System

Two-periodic system is a repetition of two identical cells.

MFF
def
= MF · MF =





















r11 trx − 1 r12 trx 0 0
r21 trx r22 trx − 1 0 0

0 0 r33 try − 1 r34 try

0 0 r43 try r44 try − 1
(trx + 1)r51 + r26 (trx + 1)r52 − r16 0 0

0 0 0 0

· · ·

· · ·

0 (trx + 1)r16 − r52

0 (trx + 1)r26 + r51

0 0
0 0
1 2r56 + r16r51 + r26r52

0 1





















. (39)

B Arc as Four-Cell Second-Order Achromat

Based on Reflection Symmetry

One of the symmetries of arrangement of arc dipole and quadrupole magnets,
which can be seen in fig.2 and which can be used in order to make the arc an
achromat, is the four-cell symmetry of the type FRFR, where the forward cell is
followed by reversed cell and then this two-cell configuration is repeated once more.
According to the available theory, the minimum number of conditions required for
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this system to become a second-order achromat are five for the first order and four
for the second order [26, 27]. One of these first order constraints is that the angular
dispersion, i.e. r26 matrix coefficient, is equal to zero in the end of the forward cell.
In application to the arc design, this condition is somewhat too limiting, it makes
our relatively simple system overconstrained, and in this appendix we will show that
the requirement r26 = 0 is, in fact, superfluous15. Note that, similar to [26, 27], we
will consider only magnetic systems with midplane symmetry.

B.1 First Order Requirements

The first-order conditions are that the system transfer matrix Marc is equal to
the identity matrix except, possibly, for the r56 element relating the time-of-flight
difference to the energy difference between the reference particle and an off-energy
particle.

Let us introduce the matrix MFR = MR ·MF with the elements r̄km and write

Marc = MR · MF · MR · MF = (MR · MF )R · (MR · MF )F =

(MFR)R · (MFR)F . (40)

Applying now formulae (33) to the product in the right hand side of (40) we obtain
that to satisfy the first order requirements one must have

r̄12 = r̄21 = r̄26 = r̄34 = r̄43 = 0 . (41)

Resolving now the equations (41) in the terms of the elements of the forward cell
matrix MF we obtain two solutions for the x-motion

r12 = r21 = r26 = 0 or r11 = r22 = 0 , (42)

and also two solutions for the y-motion

r34 = r43 = 0 or r33 = r44 = 0 . (43)

Note that because

(MFR)R = (MFR)F , (44)

the arc matrix Marc can also be written as

Marc = (MFR)F · (MFR)R , (45)

15Note that the fact, that instead of five first order conditions only four are really necessary, is
true in application to some other four-cell systems considered in [26, 27].
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and one can use formulae (38) instead of (33) and obtain

r̄12 = r̄21 = r̄51 = r̄34 = r̄43 = 0 , (46)

which is equivalent to (41) due to symplecticity conditions (21). Even more, using
(44) one may recover the same conditions (42)-(43) starting from repetitive symmetry

Marc = (MFR)F · (MFR)F , (47)

but calculations along this road will take a little bit longer.
With the second sets from conditions (42) and (43) satisfied16 the matrix of one

half of the arc takes the form

MFR =





















−1 0 0 0 0 2r12r26

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 −2r12r26 0 0 1 2(r56 − r16r26)
0 0 0 0 0 1





















(48)

and, as it was required

Marc =





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 4(r56 − r16r26)
0 0 0 0 0 1





















. (49)

Thus, to construct a four-cell second-order achromat using reflection symmetry,
not simply a 90◦ cell is needed as in an achromat built out of four identical cells, but
a 90◦ cell with zero diagonal elements

r11 = r22 = r33 = r44 = 0 . (50)

B.2 Second Order Requirements

The second order aberrations of the transfer map : MF : of the first cell of the
arc (forward cell) can be represented by a matrix MF and a third order polynomial
F3 through a Lie factorization as (see, for example, [25])

: MF : =2 exp(: F3(z) :) : MF : , (51)

16The first sets of conditions (42) and (43) mean that the matrix of one half of the arc is already
an identity matrix and are not interesting for us in this paper.
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where =2 denotes equality up to order 2 when maps on both sides of (51) are applied
to the phase space vector z .

The map of the cell in which the order of the magnetic elements is reversed from
that of the forward cell (reversed cell) is given by the following Lie factorization

: MR : = : TR :: MF :−1: TR : =2 : MR : exp(: F3(TR · z) :) . (52)

Thus the transfer map : Marc : of the total arc considered as four-cell system is
given by

: Marc : = : MF :: MR :: MF :: MR : =2 exp(: F3(z) :) : MF :

: MR : exp(: F3(TR · z) :) exp(: F3(z) :) : MF :: MR : exp(: F3(TR · z) :) =2

exp(: F3(z) :) : MFR : exp(: F3(z) + F3(TR · z) :) : MFR : exp(: F3(TR · z) :) . (53)

Dispersion decomposition (22) applied to the matrix MFR which has the form
(48) gives

: MFR : = : D(MFR) · N(MFR) · D−1(MFR) : =

: D(MFR) :−1: N(MFR) :: D(MFR) : (54)

with coefficients A, B and C defined as follows

A = r12r26 = −r52 , B = 0 , C = 2 (r56 − r16r26) . (55)

Substituting (54) into (53) we obtain after some straightforward manipulations

: Marc : =2 : D(MFR) :−1 exp(: K3(z) :) : N2(MFR) :: D(MFR) : (56)

where

K3(z) = F3(D(MFR) · z) + F3(D(MFR)N(MFR) · z) +

F3(TRD(MFR)N(MFR) · z) + F3(TRD(MFR)N2(MFR) · z) . (57)

Because B = 0, the matrices TR and D(MFR) commute, i.e.

TR · D(MFR) = D(MFR) · TR , (58)

and we can rewrite (57) as

K3(z) = F3(D(MFR) · (z)) + F3(D(MFR) · (N(MFR) · z)) +
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F3(D(MFR) · (TRN(MFR) · z)) + F3(D(MFR) · (TRN2(MFR) · z)) , (59)

which is equivalent to

K3(z) = P3(z) + P3(N(MFR) · z) +

P3(TRN(MFR) · z) + P3(TRN2(MFR) · z) =

P3(x, px, y, py, ε) + P3(−x, −px, −y, −py, ε) +

P3(−x, px, −y, py, ε) + P3(x, −px, y, −py, ε) , (60)

where P3 is defined as

P3(z) = F3(D(MFR) · z) = F3(x − r52ε, px, y, py, ε) . (61)

Let cabcde(P3) be the coefficient with which monomial xa pb
x yc pd

y εe enters the
polynomial P3 . Then (60) can be rewritten as

K3(z) = 4ε ·
(

c20001(P3) · x2 + c02001(P3) · p2

x + c00201(P3) · y2 +

c00021(P3) · p2

y + c10101(P3) · xy + c01011(P3) · pxpy + c00003(P3) · ε2
)

, (62)

or, when expressed using coefficients of polynomial F3 ,

K3(z) = 4ε ·
(

(c20001(F3) − 3r52 · c30000(F3)) · x2 +

(c02001(F3) − r52 · c12000(F3)) · p2

x +

(c00201(F3) − r52 · c10200(F3)) · y2 +

(c00021(F3) − r52 · c10020(F3)) · p2

y +

(c10101(F3) − 2r52 · c20100(F3)) · xy +

(c01011(F3) − r52 · c11010(F3)) · pxpy +

(

c00003(F3) − r52 · c10002(F3) + r2

52 · c20001(F3) − r3

52 · c30000(F3)
)

· ε2
)

. (63)

46



Representing now the operator : N 2(MFR) : in exponential form

: N2(MFR) : = exp(: 2(r56 − r16r26) · ε2 :) (64)

and taking into account that

: N2(MFR) :: D(MFR) : = : D(MFR) :: N2(MFR) : (65)

we obtain from (56) the representation of the first and second order terms of the arc
map in the form of a single Lie exponent

: Marc : =2 exp(: K3(x + r52 · ε, px, y, py, ε) + 2(r56 − r16r26) · ε2 :) , (66)

which has the advantage of explicitly showing the number of independent aberrations
to be corrected.

For a system consisting of only magnets with the mid-plane symmetry, F3 is an
even function of variables y and py , which yields,

c10101(F3) = c20100(F3) = c01011(F3) = c11010(F3) = 0 , (67)

and only 4 conditions



















c20001(K3) = 4 · (c20001(F3) − 3r52 · c30000(F3)) = 0
c02001(K3) = 4 · (c02001(F3) − r52 · c12000(F3)) = 0
c00201(K3) = 4 · (c00201(F3) − r52 · c10200(F3)) = 0
c00021(K3) = 4 · (c00021(F3) − r52 · c10020(F3)) = 0

(68)

remain to be satisfied to achieve a second order achromat, which, in general, requires
4 independent sextupole families.

B.3 Second Order Aberrations as Integrals

of First-Order Trajectories

It is useful to express the second-order aberrations as integrals of the first-order
trajectories (matrix elements) and of the magnetic field parameters (multipole com-
ponents). Using

F3(z) = −
lc
∫

0

H3(τ, MF (τ) · z) dτ (69)

where H3(τ, z) is given by (16) and lc is the length of the forward cell, and intro-
ducing notations

D0(τ) = r16(τ) − r52(lc) · r11(τ) (70)
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and

D′

0
(τ) = r26(τ) − r52(lc) · r21(τ) (71)

we obtain after some straightforward manipulations

c20001(K3) = −2

lc
∫

0

(

k2r
2

11
D0 + 2hr11r21D

′

0
+ hr2

21
D0 −

2h′r11r21D0 − h′r2

11D
′

0 − h′′r2

11D0 + 2hk1r
2

11D0 − r2

21

)

dτ =

−2

lc
∫

0

(

k2r
2

11D0 + h
(

r2

11

)′

D′

0 + hr2

21D0 −
(

h′r2

11D0

)′

+ 2hk1r
2

11D0 − r2

21

)

dτ =

−2

lc
∫

0

(

k2r
2

11
D0 + h

(

r2

11

)′

D′

0
+ hr2

21
D0 + 2hk1r

2

11
D0 − r2

21

)

dτ , (72)

c02001(K3) = −2

lc
∫

0

(

k2r
2

12
D0 + 2hr12r22D

′

0
+ hr2

22
D0 −

2h′r12r22D0 − h′r2

12
D′

0
− h′′r2

12
D0 + 2hk1r

2

12
D0 − r2

22

)

dτ =

−2

lc
∫

0

(

k2r
2

12
D0 + h

(

r2

12

)′

D′

0
+ hr2

22
D0 −

(

h′r2

12
D0

)′

+ 2hk1r
2

12
D0 − r2

22

)

dτ =

−2

lc
∫

0

(

k2r
2

12D0 + h
(

r2

12

)′

D′

0 + hr2

22D0 + 2hk1r
2

12D0 − r2

22

)

dτ , (73)

c00201(K3) = 2

lc
∫

0

(

k2r
2

33
D0 − hr2

43
D0 − h′r2

33
D′

0
+ hk1r

2

33
D0 + r2

43

)

dτ , (74)

c00021(K3) = 2

lc
∫

0

(

k2r
2

34
D0 − hr2

44
D0 − h′r2

34
D′

0
+ hk1r

2

34
D0 + r2

44

)

dτ . (75)
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Figure 34: Solution for dispersion which is periodic for the first half of the first arc
of the XFEL post-linac collimation section.

Note that in deriving formulas (72) and (73) we have used the equalities

lc
∫

0

(

h′r2

11D0

)′

dτ =

lc
∫

0

(

h′r2

12D0

)′

dτ = 0 ,

which, in general, are not true for an arbitrary cell, but must be satisfied for the cell
which is the forward cell of some FRFR system.

Note also that, in contrast with repetitive achromat theories, the dispersion D0

in (72)-(75) is not the periodic (matched) cell dispersion, but is the dispersion which
is periodic for the system which consist of forward cell followed by reversed cell and,
in application to the arc design, can be seen in fig.34.

C Arc as Two-Cell Second-Order Achromat

Based on Repetitive Symmetry

In contrast to the case discussed above, another symmetry (which also can be
seen in fig.2) can be used in order to make the arc an achromat: consider the arc as
a repetition of two identical cells. The repetitive second-order achromats were the
first achromats ever considered [28], and the importance of the achromat concept is
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now well established and was used in the design of many particle accelerators and
beam transport lines (see, for example, [29]).

The theory of repetitive achromats (see, for example, [30]) states, that a system
built out of n identical cells (n > 1) with the overall first order matrix equaling to
unity in both transverse planes and with the tunes of a cell such that resonances
which are not forbidden by the mid-plane symmetry are avoided up to third order,
cancels all second-order geometric aberrations and can be corrected to become a
second-order achromat using only two families of sextupoles.

This theory relies on appropriate selection of cell tunes in order to cancel all
geometric aberrations and in order to reduce the number of independent chromatic
aberrations to two and, therefore, the number of cells must be greater or equal to
four.

It is also known that, in the case n is equal to two and cell tunes are not
integers, geometric aberrations are still cancelled automatically, but the number of
independent chromatic aberrations becomes larger than two and can not be cancelled
by using only two families of sextupoles. It is, probably, the main reason why we were
not able to find in the literature an accurate consideration of two-cell second-order
achromats (though there is an example of a constructed and operated “practical”
two-cell second-order achromat [31]) and in this appendix we fill this unexpected gap
in the achromat theories.

C.1 First Order Requirements

The matrix of the arc Marc considered as a repetition of two identical cells
satisfies

Marc = MH · MH , (76)

where MH is the matrix of the half of the arc and its elements we will denote as
r̄km. Applying now formulae (39) to the product in the right hand side of (76) we
obtain two solutions for the x-motion







































r̄12 = 0
r̄21 = 0
r̄16 = 0
r̄26 = 0
r̄11 = 1
r̄22 = 1

or



















r̄12 = 0
r̄21 = 0
r̄11 = −1
r̄22 = −1

(77)

and also two solutions for the y-motion


















r̄34 = 0
r̄43 = 0
r̄33 = 1
r̄44 = 1

or



















r̄34 = 0
r̄43 = 0
r̄33 = −1
r̄44 = −1

(78)
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among which one can choose in order to satisfy the first order requirements, which
are the same as for the symmetry FRFR considered in the previous appendix.

With the second sets from conditions (77) and (78) satisfied17, the matrix of the
half of the arc takes the form

MH =





















−1 0 0 0 0 r̄16

0 −1 0 0 0 r̄26

0 0 −1 0 0 0
0 0 0 −1 0 0

r̄26 −r̄16 0 0 1 r̄56

0 0 0 0 0 1





















(79)

and, as it was required

Marc =





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 2r̄56

0 0 0 0 0 1





















. (80)

C.2 Second Order Requirements

If we will assume that

: MH : =2 exp(: L3(z) :) : MH : (81)

is the transfer map of the half of the arc, then the transfer map of the total arc
considered as two-cell system is given by

: Marc : = : MH :: MH : =2 exp(: L3(z) :) : MH : exp(: L3(z) :) : MH : . (82)

Dispersion decomposition (22) of the matrix MH of the form (79) yields

A =
r̄16

2
, B =

r̄26

2
, C = r̄56 (83)

and when substituted into (82) gives after some straightforward manipulations

: Marc : =2 : D(MH) :−1 exp(: Q3(z) :) : N2(MH) :: D(MH) : , (84)

where

Q3(z) = L3(D(MH) · (z)) + L3(D(MH) · (N(MH) · z)) . (85)

17The first sets of conditions (77) and (78), as in the case of the symmetry FRFR, mean that the
matrix of the half of the arc is already an identity matrix and again are not interesting for us in
this paper.
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With midplane symmetry taken into account the polynomial Q3 can be expressed
using coefficients of the polynomial L3 as follows

Q3(z) = 2ε ·
((

c20001(L3) +
3

2
r̄16 · c30000(L3) +

1

2
r̄26 · c21000(L3)

)

· x2 +

(

c02001(L3) +
3

2
r̄26 · c03000(L3) +

1

2
r̄16 · c12000(L3)

)

· p2

x +

(c11001(L3) + r̄16 · c21000(L3) + r̄26 · c12000(L3)) · xpx +

(

c00201(L3) +
1

2
r̄16 · c10200(L3) +

1

2
r̄26 · c01200(L3)

)

· y2 +

(

c00021(L3) +
1

2
r̄16 · c10020(L3) +

1

2
r̄26 · c01020(L3)

)

· p2

y +

(

c00111(L3) +
1

2
r̄16 · c10110(L3) +

1

2
r̄26 · c01110(L3)

)

· ypy +

(

c00003(L3) +
1

2
r̄16 · c10002(L3) +

1

2
r̄26 · c01002(L3) +

1

4
r̄2

16
· c20001(L3) +

1

4
r̄16 r̄26 · c11001(L3) +

1

4
r̄2

26
· c02001(L3) +

1

8
r̄3

16
· c30000(L3) +

1

8
r̄2

16
r̄26 · c21000(L3) +

1

8
r̄16 r̄2

26
· c12000(L3) +

1

8
r̄3

26
· c03000(L3)

)

· ε2

)

, (86)

and that gives us 6 conditions






















































































c20001(Q3) = 2 · (c20001(L3) + 3

2
r̄16 · c30000(L3) + 1

2
r̄26 · c21000(L3)) = 0

c02001(Q3) = 2 · (c02001(L3) + 3

2
r̄26 · c03000(L3) + 1

2
r̄16 · c12000(L3)) = 0

c11001(Q3) = 2 · (c11001(L3) + r̄16 · c21000(L3) + r̄26 · c12000(L3)) = 0

c00201(Q3) = 2 · (c00201(L3) + 1

2
r̄16 · c10200(L3) + 1

2
r̄26 · c01200(L3)) = 0

c00021(Q3) = 2 · (c00021(L3) + 1

2
r̄16 · c10020(L3) + 1

2
r̄26 · c01020(L3)) = 0

c00111(Q3) = 2 · (c00111(L3) + 1

2
r̄16 · c10110(L3) + 1

2
r̄26 · c01110(L3)) = 0

(87)

to satisfy in order to achieve a second order achromat, which, in general, requires 6
independent sextupole families.

Note that, in analogy with (66), first and second order terms of the arc map can
be represented in the form of a single Lie exponent

: Marc : =2 exp(: Q3(x − 0.5 · r̄16 · ε, px − 0.5 · r̄26 · ε, y, py, ε) + r̄56 · ε2 :) . (88)

52



C.3 Second Order Aberrations as Integrals

of First-Order Trajectories

Let lH be the length of the half of the arc. Expressing nonzero coefficients of the
polynomial Q3 (second-order chromatic aberrations) as integrals of the first-order
trajectories and of the magnetic field parameters we obtain

c20001(Q3) = −
lH
∫

0

(

k2r̄
2

11
D̄0 + h

(

r̄2

11

)′

D̄′

0
+ hr̄2

21
D̄0 −

(

h′r̄2

11
D̄0

)′

+ 2hk1r̄
2

11
D̄0 − r̄2

21

)

dτ =

−
lH
∫

0

(

k2r̄
2

11D̄0 + h
(

r̄2

11

)′

D̄′

0 + hr̄2

21D̄0 + 2hk1r̄
2

11D̄0 − r̄2

21

)

dτ , (89)

c02001(Q3) = −
lH
∫

0

(

k2r̄
2

12
D̄0 + h

(

r̄2

12

)′

D̄′

0
+ hr̄2

22
D̄0 −

(

h′r̄2

12D̄0

)′

+ 2hk1r̄
2

12D̄0 − r̄2

22

)

dτ =

−
lH
∫

0

(

k2r̄
2

12
D̄0 + h

(

r̄2

12

)′

D̄′

0
+ hr̄2

22
D̄0 + 2hk1r̄

2

12
D̄0 − r̄2

22

)

dτ , (90)

c11001(Q3) = −2

lH
∫

0

(

k2r̄11r̄12D̄0 + h (r̄11r̄12)
′ D̄′

0 + hr̄21r̄22D̄0 −

(

h′r̄11r̄12D̄0

)′

+ 2hk1r̄11r̄12D̄0 − r̄21r̄22

)

dτ =

−2

lH
∫

0

(

k2r̄11r̄12D̄0 + h (r̄11r̄12)
′ D̄′

0
+ hr̄21r̄22D̄0 + 2hk1r̄11r̄12D̄0 − r̄21r̄22

)

dτ , (91)

c00201(Q3) =

lH
∫

0

(

k2r̄
2

33
D̄0 − hr̄2

43
D̄0 − h′r̄2

33
D̄′

0
+ hk1r̄

2

33
D̄0 + r̄2

43

)

dτ , (92)
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c00021(Q3) =

lH
∫

0

(

k2r̄
2

34D̄0 − hr̄2

44D̄0 − h′r̄2

34D̄
′

0 + hk1r̄
2

34D̄0 + r̄2

44

)

dτ , (93)

c00111(Q3) = 2

lH
∫

0

(

k2r̄33r̄34D̄0 − hr̄43r̄44D̄0 − h′r̄33r̄34D̄
′

0 +

hk1r̄33r̄34D̄0 + r̄43r̄44

)

dτ , (94)

where

D̄0(τ) =
r̄11(τ) · r̄16(lH) + r̄12(τ) · r̄26(lH)

2
+ r̄16(τ) (95)

is the solution for the dispersion function which is periodic within half of the arc and

D̄′

0
(τ) =

r̄21(τ) · r̄16(lH) + r̄22(τ) · r̄26(lH)

2
+ r̄26(τ) (96)

is its derivative with respect to variable τ .
Let us assume that the linear optics of the system is set in accordance with the

symmetry FRFR, i.e. that the first half of the arc is a two-cell combination consisting
of the forward cell followed by its mirror reflected image (reversed cell), and for the
forward cell the conditions (50) are satisfied. Then from (36) and (37) it follows that

r̄12(τ), r̄21(τ), D̄0(τ), r̄34(τ), r̄43(τ) (97)

are even and

r̄11(τ), r̄22(τ), D̄′

0
(τ) r̄33(τ), r̄44(τ) (98)

are odd functions with respect to the point τ = lH / 2 = lc . This allows us to reduce
the parts of integrals (89)-(94) which are independent from sextupole settings, to the
integration not over the half of the arc, but to the integration over one quarter of the
arc and thus to establish the connection between coefficients of the polynomial K3

in (66) and coefficients of the polynomial Q3 in (88). Using formulas (72)-(75) and
(89)-(94), the fact that c11001(K3) = c00111(K3) = 0 and the symmetry conditions
(97)-(98) we obtain

c20001(Q3) = −
lH
∫

0

k2r̄
2

11
D̄0dτ + c20001(K3, k2 ≡ 0) , (99)

c02001(Q3) = −
lH
∫

0

k2r̄
2

12
D̄0dτ + c02001(K3, k2 ≡ 0) , (100)
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c11001(Q3) = −2

lH
∫

0

k2r̄11r̄12D̄0dτ , (101)

c00201(Q3) =

lH
∫

0

k2r̄
2

33D̄0dτ + c00201(K3, k2 ≡ 0) , (102)

c00021(Q3) = −
lH
∫

0

k2r̄
2

34
D̄0dτ + c00021(K3, k2 ≡ 0) , (103)

c00111(Q3) = 2

lH
∫

0

k2r̄33r̄34D̄0dτ , (104)

where the symbols cabcde(K3, k2 ≡ 0) mean the corresponding coefficient of the
polynomial K3 calculated for the sextupole field strength equal to zero (k2(τ) ≡ 0).

If the sextupole field strength will also follow the symmetry FRFR, than according
to (99)-(104) and (72)-(75) the polynomials Q3 and K3 will coincide as would be
expected, and the two-cell approach to the second-order achromat design turns into
the four-cell approach based on reflection symmetry.
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