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The field inside a resonator is proportional to the vector sum of the forward and the reflected
wave in front of the power coupler. The cavity field derived from the measured amplitudes and
phases of these waves can be used for low level RF (LLRF) control. This approach is required for
cavities without field probe but offers also additional diagnostics and possibilities for cross-checks
in case a probe is present. A precise field estimate requires a relative calibration of the forward and
reflected waves in amplitude and phase. This article introduces a simple online calibration method
which is applicable to any resonator that is operated close to steady state.

PACS numbers:

I. INTRODUCTION

Inside photoinjectors, electrons are liberated from a
cathode (e. g. Cesium Telluride) by means of the pho-
toeffect. In order to keep space charge effects small, the
electrons are exposed to a very high field of > 45 MV/m
in a small volume of the resonator. The electrons are ac-
celerated to a relativistic velocity on a path of the length
of only a few centimeters.

The RF gun of the FLASH photoinjector is a 1.5 cell
normalconducting cavity operated at 1.3 GHz. It is de-
signed to operate at high duty cycle with an average heat
load of up to 50 kW (∼ 200 kW/m). This high heat load
demands for an optimized placement of cooling channels
for the heat-transport. Focussing solenoids put addi-
tional space restrictions and led to the decision to build
the cavity without RF probe and to measure the forward
and the reflected wave with a high precision directional
coupler instead.

For field stability requirements of 1% in amplitude and
1◦ in phase it is not sufficient to stabilize the forward
traveling wave alone. An amplitude distortion of 1%
is already present if the resonator is detuned by 1% of
its half-bandwidth, which is 650 Hz for a resonator of
half-bandwidth ω1/2 = 65 kHz. The dependency of the
temperature of the resonator (e. g. 20 kHz/◦C), would

require long term stability of 1
30

◦

C. Due to the high
heat load during a pulse, additional short term detuning
caused by surface heating will lead to significant detuning
angles of a few degrees ([1]) which can not be compen-
sated by temperature control.

Field stability therefore can only be achieved by in-
cluding the reflected power signal. From resonator the-
ory, one can conclude that the field inside a cavity is the
sum of the complex amplitudes of the forward and re-
flected waves. In a real system, all signals are subject to
amplitude and phase errors, which demand for a precise

∗Electronic address: alexander.brandt@desy.de

calibration.
In the following sections, U is used for the field inside

the resonator, while Ufor and Uref are used for the the for-
ward and reflected wave. U,Ufor, Uref ∈ C and therefore
contain amplitude and phase.

All numbers throughout this article are taken from or
calculated for the FLASH L-band high duty cycle pho-
toinjector, [2].

II. RESONATOR THEORY

Energy is conserved at the high-power coupler in front
of the RF-gun, the power Pfor of the forward traveling
wave is the sum of the transmitted power Ptrans and the
reflected power Pref. The complex amplitudes of these
waves fulfill the equation Utrans = Ufor + Uref (with the
sign of Uref properly defined). The power of the trans-
mitted wave goes into field increase and into dissipation.
The complex amplitude of the transmitted wave is di-
rectly proportional to the compex amplitude of the cavity
field.

The complex amplitude Utrans is connected with the
complex amplitude of the forward traveling wave via the
properties of the resonator itself. Figure 1 shows Utrans,
Ufor and Uref in the complex plane. The reflected wave is
a superposition of a reflection due to frequency mismatch
(detuning) and a reflection due to impedance mismatch.
In figure 1, U ′

ref is the fraction of the reflection that is
caused by detuning. The impedance mismatch is charac-
terized by Γ0, the reflection coefficient for zero detuning
and steady state and is determined by the coupling coef-
ficient β,

β =
1 + Γ0

1 − Γ0

(

⇔ Γ0 =
β − 1

β + 1

)

. (1)

The coupling coefficient is the ratio of the impedances of
the transmission line and the cavity on resonance, β =
Zext/R. Generally, the reflection coefficient Γ is the ratio
of the complex amplitudes of forward and reflected waves,
Γ = Uref/Ufor.
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A resonator of half-bandwidth ω1/2 and detuning ∆ω
is formally described by the so-called envelope equation

ω1/2(1 + Γ0)Ufor = (ω1/2 + i∆ω)Utrans +
d

dt
Utrans. (2)

The envelope-equation is derived (and approximated)
from the more general second-order bandpass-equation

2ω0ω1/2(1+Γ0)Ufor =
d2

dt2
Utrans+2ω1/2

d

dt
Utrans+ω

2
0Utrans.

(3)
The envelope-approximation is justified by the assump-
tion that Utrans/e

ω0t is changing slowly compared to the
center frequency ω0 of the resonator and that the detun-
ing ∆ω is small compered to ω0. A derivation of the
envelope-approximation can be found in [3]. In steady
state, the envelope-equation becomes

Utrans = (1 + Γ0)
ω1/2

ω1/2 + i∆ω
Ufor. (4)

This equation directly implies that Utrans is moving along
a circle as depicted in figure 1 for different values of the
detuning ∆ω and constant Ufor.

Since the steady state case scales linearly with Ufor, it
is useful to measure Uref relative to the forward ampli-
tude Ufor, which is identical to measuring the reflection
coefficient Γ.

An interesting way of looking at the reflected power
signal is the following: in principle, the high power cou-
pler is a field probe itself. The signal that is coupled
out of the high power is the cavity field (or the transmit-
ted wave) but is superimposed with the forward traveling
wave and hence measured as the reflected wave.

The next sections identify Utrans with the accelerating
cavity voltage U , which is directly proportional to Utrans.
The field directly at the high power coupler is the super-
position of the complex amplitudes of the forward and
the reflected wave. The amplitude of the cavity field can
be calculated from the power Ptrans of the transmitted
wave as U =

√
RPtrans where R is the shunt impedance

of the cavity.
A more elaborate introduction to resonator theory and

microwave measurements can be found in [4].

III. PRECISION REQUIREMENTS

This section will give an analytic approach to quantify
the calibration requirements. The relevance of the rela-
tive calibration between forward and reflected power has
initially been shown in [1]

The field that is determined in the absence of an an-
tenna is

U = Ufor + Uref. (5)

Ufor and Uref are the amplitudes of the forward and the
reflected wave measured in units of the cavity field, U . In

practice, constant calibration errors, (∆A/A) (as a rela-
tive quantity) in amplitude and ∆ϕ in phase, are made
when determining the observables after the calibration.
For simplicity, first the influence of a constant calibration
error in amplitude, (∆A/A), of the observables on the
field estimate is considered. Figure 2 demonstrates how
a constant calibration error in amplitude of the reflected
field can lead to a time-varying error of the estimated
cavity field phase. It shows the complex plane with solid
arrows representing the true values as well as dashed ar-
rows representing measurements by the controller, e. g. a
digital signal processor (DSP). It is important to realize
that for LLRF control, constant errors on the determined
cavity field U are irrelevant. Due to time-varying detun-
ing, constant errors on the observables Ufor and Uref can
lead to a time-varying error on the field U , which is of
relevance for LLRF control.

In order to estimate the error of the cavity field phase,
a zoomed region is presented in figure 2. The error in
phase is, in small-angle approximation, just the ratio be-
tween the length of a (see figure) and the field ampli-
tude, |U |. The law of sines yields |Uref| sinα = |U | sinψ.
Therefore, the phase error of the cavity-field is

∆ϕ′

cavity =
a

|U |

=

(

∆A
A

)

|Uref| sinα
|U |

=

(

∆A

A

)

sinψ (6)

where (∆A/A) is the relative amplitude calibration er-
ror of the reflected wave. In reality, both forward and
reflected wave will have statistically independent ampli-
tude calibration errors. This can be included in the pre-
sented calculation by just multiplying with a factor

√
2.

Its interpretation is that the measured fields are trans-
formed into a coordinate system where the forward field
has no calibration error. The calibration error of the
forward wave is reflected in that transformation and in-
creases the error of the reflected wave signal.

∆ϕcavity =
√

2

(

∆A

A

)

sinψ (7)

Similarly, an approximation of the contribution of a con-
stant phase calibration error ∆ϕ on the measured cavity
field amplitude can be found,

(

∆A

A

)

cavity

=
√

2∆ϕ sinψ (8)

The contribution from a phase calibration error to a
phase error and from amplitude calibtration to ampli-
tude error is of second order and is neglected here. Also,
the change in cavity field amplitude due to detuning in
connection with a change of the detuning angle ψ is of
second order and therefore neglected.
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FIG. 1: Resonance circle. The dotted circles are the valid circles for critical coupling (β = 1) and a high overcoupling (β >> 1).
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FIG. 2: Vector constellation in a complex plane for approximating the errors on the constructed cavity field. The dashed
arrows represent the measurements made by the controller, e. g. a DSP. The solid arrows are the real values. In this simplified
example, the measured forward vector coincides with the real forward vector, while the measured reflected vector has an error
in amplitude compared to the real reflected vector.

A typical value for the detuning over a pulse is ψ = 3◦,
[1]. A calibration error of 5% in amplitude and 5◦ in
phase will allow to measure the field up to 0.6% in ampli-
tude and 0.2◦ in phase, which is sufficient for controlling
the cavity with a precision of 1% and 1◦.

It should be noted that not only constant calibra-
tion errors produce time-varying field-errors. Any addi-
tional quasi-constant error of the order of 5◦ in phase or
5 % in amplitude will contribute to significant errors on
the reconstructed cavity field. Examples are amplitude-
compression of elements of the sensor-chain, time-varying
offsets, cross-talk between forward and reflected power
sensors and general cross-talk from any other source.
Additionally, sensors can have detector-specific errors.
Industrial I/Q-modulators have shown the phase differ-
ences between the I and the Q channels to be different
than 90 ◦.

For LLRF control, it is of importance to avoid time-
varying errors on the reconstructed field signal rather
than constant errors. The problem with reconstructing
the field signal from two secondary signals (forward and

reflected signal) is, that constant errors on the secondary
channels induce time-varying errors on the reconstructed
field.

IV. SIGNAL-CALIBRATION WITHOUT

ANTENNA

Prerequisite for the calibration is that the measured
forward and reflected signal need to be corrected only
for quasi-constant distortions,

Ufor = AU∗

for +BU∗

ref

Uref = CU∗

for +DU∗

ref (9)

with A,B,C,D ∈ C representing the amplitude and
phase corrections that need to be applied on the mea-
sured signals (indicated by the ∗) in order to get the
calibrated signals. The signals are usually measured
by directional couplers close to the cavity. In the case
B,C 6= 0, (9) compensates for linear crosstalk between
the forward and the reflected channel.
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If the non-diagonal elements B,C are neglected, the
reflection-coefficient for the measured signals Γ∗ =
U∗

ref/U
∗

for differs from the true reflection coefficient Γ =
Uref/Ufor by a factor D/A corresponding to a rotation
and a scaling. It is possible to determine this factor be-
cause the reflection coefficient Γ is known for one point.
Far away from the resonance frequency, the reflection co-
efficient is Γ∞= − 1. Usually, it is hardly possible to
completely detune a resonator in order to measure Γ∞.
However, if just detuned by one half-bandwidth, the field
inside the cavity already changes its phase by 45◦. That
means that already a quarter (90◦) of a whole circle is
covered by detuning by a half-bandwidth in each direc-
tion. This is enough for fitting a circle with radius r
and center c (c ∈ C) through the measured points by
minimizing

χ2 =
∑

i

(|Γ∗

i − c| − r)2 (10)

for all measured Γ∗

i . The uncalibrated reflection coeffi-
cient for maximum detuning can be identified with c and
r as

Γ∗

∞
= (|c| + r)

c

|c| . (11)

Since Γ∞ = −1, the factor D/A is just −1/Γ∗

∞
. With

this calibration, additional useful information can be ob-
tained:

Γ0 = −D
A

(|c| − r)
c

|c|

= − (|c| − r)

(|c| + r)
(12)

and from this the coupling β = (1 + Γ0)/(1 − Γ0).

V. WAYS OF DETUNING A CAVITY

There are several ways to detune the cavity in or-
der to cover a significant fraction of the resonance cir-
cle. An obvious way is the temperature scan, where the
temperature of the resonator is varied over time. The
resonance frequency of the gun changes with typically
20 kHz/◦C. 3 ◦ in temperature de-tune the electron gun
by a half-bandwidth (e. g. ∼ 65 kHz at a center frequency
of ω0 = 1.3 GHz). The disadvantage of the temperature-
scan is the fact that it interrupts the machine operation
and is probably affected by temperature transient effects.
In addition, it is slow due to the high heat capacity of
resonators.

Another way of detuning a cavity is to change the
frequency of the drive signal rather than changing the
center-frequency of the resonator. Since the cavities are
typically locked to a frequency reference (master oscilla-
tor), this can be achieved by replacing the reference with
an adjustable frequency generator. This approach usally
is not applicable during normal operation, too.

An interesting way of covering fractions of the reso-
nance circle is to induce the variation in frequency at
the drive signal by digital frequency synthesis. Practi-
cally speaking, this is nothing but creating a linear phase
sweep on the envelope of the drive signal. In a pulsed en-
vironment, this can be achieved completely transparently
by applying a second, low-power pulse directly after the
main pulse. The slope of the phase (which is the fre-
quency offset) of this secondary pulse is varied from shot
to shot. The length of the secondary pulse can be of the
order of a few time-constants of the resonator itself to
assure steady state. For a 65 kHz-resonator, this would
be a few 10µs.

VI. EXPERIENCE AT FLASH

In order to exploit the properties of the resonance cir-
cle for an online calibration we implemented a feature
with the following properties into the RF gun controller,
[5] and [6]. Directly after the primary pulse for beam
acceleration, a secondary pulse is produced. It is not
controlled by feedback (only feedforward), regardless if
feedback for the primary pulse is turned on or not and
it is not influenced by changes in the amplitude or phase
of the primary pulse. Furthermore, its amplitude is usu-
ally chosen to be significantly smaller than the ampli-
tude of the primary pulse in order not to impose too
large changes on the heat-load of the cavity. Figure 3
shows a typical result of the calibration routine. The
left side shows the amplitudes of primary and secondary
pulses. The phase of the primary pulse is held constant
by feedback, while the phase of the secondary pulse has
a slope corresponding to some detuning, usually between
−60 kHz and +60 kHz in steps of a few kHz. For a certain
detuning, the reflection coefficient is calculated for every
single sample in the secondary pulse and averaged over
all samples. Every cross in the right plot of figure 3 rep-
resents an averaged reflection coefficient. The collection
of reflection coefficients forms a fraction of a circle, from
which the algorithm automatically determines center and
radius. The calibration coefficients are derived from the
results as described in the sections above.

Application of the new feature is completely transpar-
ent to the operators and takes less than 30 s. It is used for
long-term drift measurements as well as for fast checks
of the calibration parameters after a shutdown. It is also
used for tracking changes in the coupling coefficient β
after a cathode-exchange.

VII. SUMMARY

Modern photoinjectors are exposed to field require-
ments which can not be achieved by just stabilizing the
incoming wave. Heat load due to high duty cycles lead
to a time-varying detuning over the pulse, which de-
mands for an inclusion of the reflected wave when con-
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FIG. 3: Practical example for a calibration performed with the introduced algorithm at FLASH. The small step at the end
of the primary pulse on the left picture is used for the calibration. The right picture shows the reflection coefficients in the
complex plane after calibration together with all calibration coefficients.

trolling the cavity. While constant errors are irrelevant
for LLRF control, time-varying errors have a significant
impact on the control. It was shown that the cavity field,
if composed from forward and reflected waves is subject
to time-varying errors, even if the individual observables
only have constant errors. Offsets, non-linearities and
cross-talk of the sensor-chain can make LLRF-control
without field probe impossible, especially if exposed to
tight field requirements. Further, a calibration scheme
was introduced that can be executed completely trans-
parent to the operators. It allows permanent monitoring

of the calibration as well as the coupling coefficient β of
the cavity.
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