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The FLASH facility requires novel techniques to characterize the longitudinal charge dis-
tribution of the electron bunches that drive the free-electron laser. Bunch features well below
30 µm need to be resolved. One technique is based on the measurement of the far-infrared ra-
diation spectrum and reconstruction of the bunch shape through Fourier analysis. Currently,
experiments using synchrotron, transition and diffraction radiation are operating at FLASH,
studying the emission spectra with various instruments. This report describes the basic physics,
the measurement principles, and gives explicit mathematical derivations. References to more
comprehensive discussions of practical problems and experiments are listed.

After a brief introduction in Sect. 1, the radiation spectrum emitted by an electron bunch is
calculated in Sect. 2 in far-field approximation. The technique to reconstruct the bunch shape
from the spectrum and its basic limitations are then explained in Sect. 3. Practical examples are
given. Some additional material is collected in the appendices.

The typical radiation pulse duration ranges from less than 100 femtoseconds to several pi-
coseconds. Conventional bolometric radiation detectors are far too slow to resolve these short
pulses. It is therefore not the instantaneous power that is relevant, but the energy within a pulse.
The letter U refers in this report to an energy per unit area, resulting from time integration of
the Poynting vector. Frequency is always given as cycle frequency, not angular frequency. The
Fourier transform of a function is distinguished from the function itself only by the argument.
All calculations are done in SI units.

1 Introduction to coherent radiation diagnostics

The principle of coherent radiation diagnostics is outlined in this introductory section for the
special case of synchrotron radiation from circular motion. The angle-integrated energy spectrum
of a single relativistic electron with energy Ee moving one turn on a circle with radius R is given
by1 [Jack99]

dW

dλ
=

√
3e2

2ε0

γλc

λ3

∞∫
λc/λ

K5/3(x)dx with γ =
Ee

mec2
, λc =

4πR

3γ3
. (1)

K5/3 is a modified Bessel function. A bunch of N electrons does not simply radiate N times
this spectral energy but the spectrum is enhanced towards long wavelengths due to coherent
emission by a progressively larger fraction of all electrons (see Eq. (6) in the next section). For
wavelengths much longer than the bunch length, the bunch behaves as a single macro-particle
with charge −N e, and the radiated power scales with N2.

1It should be noted that Eq. (1) is not valid if the electron traverses only a short arc of a circle [Sal97].
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Figure 1 Bunch shapes (left) and absolute magnitude of the corresponding form factors (right).
The Gaussian has σ=50 µm. The two shapes with a leading peak and a long tail are computed
using a parametrization from [Gel03]. Such bunch shapes are typical for the effect of a magnetic
bunch compressor. The form factors are computed according to Eq. (5).

The coherence effect is illustrated for the three electron bunch shapes that are shown in Fig. 1.
The figure also shows the corresponding form factors, to be defined in the next section, that
determine the coherent amplification. The computed synchrotron radiation spectra for a bunch
charge of 1 nC are plotted in Fig. 2. The electron energy is 130 MeV, the radius of curvature
is 1.6 m. The spectrum is significantly enhanced in the far-infrared region, and the form of the
spectrum depends on the bunch shape. To what extent the bunch shape can be reconstructed
from such a spectrum is considered in detail in Sect. 3.1. It is obvious that already the total
emitted energy contains information on the longitudinal extension of the bunch.

In practice, the measured spectrum depends not only on the bunch shape, but also on modi-
fications resulting from the suppression of long wavelengths due to cut-off effects in the vacuum
chamber, diffraction during radiation transport and frequency-dependent detector response, ren-
dering the reconstruction process quite a demanding task.

2 Radiation spectrum from an electron bunch

The electric field in time-domain produced by a bunch of N electrons is given by the superpo-
sition of the fields from the individual electrons,

�E(t) =
N∑

i=1

�Ei(t).

The spectrum can be calculated by Fourier transformation. The Fourier transform pair2 used in
this report is defined as

�E(ν) =

∞∫
−∞

�E(t)e−2πiνt dt and �E(t) =

∞∫
−∞

�E(ν)e2πiνt dν. (2)

We assume that the time-dependence of the individual field contributions from different
electrons is identical, except for time-delays corresponding to their spatial separations. Call

2If the angular frequency ω is used instead of 2πν, a factor 1/
√

2π has to be included in front of both integrals.
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Figure 2 Synchrotron radiation by 130 MeV electrons in a magnet with 1.6 m bending radius.
The spectral energy for a bunch charge of 1 nC is shown as a function of wavelength according
to Eq. (6). The bunch shapes from Fig. 1 are used. At wavelengths above (10-100) µm a strong
enhancement is observed in comparison with the incoherent emission (dashed curve).

�E1(t) the field produced by a suitably chosen reference electron, then the field of electron i is
�Ei(t) = �E1(t + Δti). The Fourier transform of the total field reads

�E(ν) =

∞∫
−∞

∑
i

�Ei(t)e−2πiνtdt =
∑

i

∞∫
−∞

�E1(t + Δti)e−2πiνtdt =
∑

i

∞∫
−∞

�E1(t̃)e−2πiν(t̃−Δti)dt̃

=
∑

i

e2πiνΔti

∞∫
−∞

�E1(t̃)e−2πiνt̃dt̃ = �E1(ν)
∑

i

e2πiνΔti . (3)

In this equation, the origin of the radiation field is of no importance, it could for example be
produced by relativistic electrons that are deflected in a magnetic field (synchrotron radiation)
or that cross the boundary between two media of different dielectric properties (transition ra-
diation). What matters is the same time-domain behaviour of all particles, meaning that the
electrons are uncorrelated. The present treatment is not applicable to non-stationary situations
where the radiation pulse emitted by an electron may be modified by the previously emitted
radiation from other electrons. This happens for example at the edge of a magnetic field (see
[Sal97] for details). In such cases the assumption of identical pulse shapes is no longer justified.

The energy spectrum in the far-field is calculated in Appendix A, Eq. (18):

dU

dν
=
〈

2ε0c
∣∣∣ �E(ν)

∣∣∣2〉 .

The angle brackets indicate the ensemble average which must be taken since �E(ν) is the field
resulting from one particular microscopic distribution of particles while dU/dν is a macroscopic
quantity.
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For an electron bunch of arbitrary shape, as depicted in Fig. 3, the time delay between
electron i and the reference electron 1 is Δti = (Ri − R1)/c. The basic assumption that all
electrons contribute the same electric field pulse in time-domain except for a time delay defines
a far-field condition. In effect, this requires the two unit vectors �n and �ni in Fig. 3 to be parallel.
Since �ri + Ri�ni = R1�n,

Ri = R1 �n · �ni − �ni · �ri ≈ R1 − �n · �ri.

The time delay can thus be written as

Δti = −�n · �ri/c = −�k · �ri/(c k), where �k =
2π
λ

�n.

�k is the wave vector, pointing from the reference electron to the observation point. The time
delay Δti leads to a phase shift between the electromagnetic waves emitted from electron i and
the reference electron 1 given by 2πcΔti/λ = −�k ·�ri . The wavelength-dependent energy density
spectrum3 becomes

dU

dλ
=

2ε0c
2

λ2

〈∣∣∣∣∣ �E1(�k)
∑

i

e−i�k·�ri

∣∣∣∣∣
2〉

=
(

dU

dλ

)
1

〈∣∣∣∣∣
∑

i

e−i�k·�ri

∣∣∣∣∣
2〉

where(
dU

dλ

)
1

=
2ε0c

2

λ2

∣∣∣ �E1(�k)
∣∣∣2

is the spectrum radiated by a single electron. Evaluation of the ensemble average yields

〈∣∣∣∣∣
∑

i

e−i�k·�ri

∣∣∣∣∣
2〉

=

〈(∑
i

e−i�k·�ri

)
·
⎛
⎝∑

j

ei�k·�rj

⎞
⎠〉

=
N∑

i=1

1 +

〈
N∑

i=1

N∑
j=1
j �=i

e−i�k·�ri · ei�k·�rj

〉
= N +

〈
N∑

i=1

e−i�k·�ri

〉〈
N∑

j=1
j �=i

ei�k·�rj

〉

We now define the normalized three-dimensional particle density distribution by

S3D(�r) =
1
N

〈
N∑

i=1

δ(�r − �ri)

〉
=

1
N − 1

〈
N∑

j=1
j �=i

δ(�r − �rj)

〉
.

The equality of the two ensemble averages follows from the fact that the probability distributions
of N and N -1 electrons are identical due to our assumption of uncorrelated electrons. With this
definition of the particle density the above ensemble average can be written as

〈∣∣∣∣∣
∑

i

e−i�k·�ri

∣∣∣∣∣
2〉

= N + N(N − 1)
∫

S3D(�r)e−i�k·�rd�r ·
∫

S3D(�s)ei�k·�sd�s.

3From the requirement |(dU/dν)dν| = |(dU/dλ)dλ|, it follows that dU/dλ = c/λ2(dU/dν).
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Figure 3 Designations used for describing coherent radiation from a bunch of electrons. The
distance to the observation point P is assumed to be large compared to the size of the bunch.
Therefore the unit vector �ni pointing from electron i to P is nearly parallel to �n which points
from the reference electron 1 at the origin to P.

The three-dimensional bunch form factor is defined as the Fourier transform of the three-
dimensional normalized particle density distribution

F3D(�k) =
∫

S3D(�r)e−i�k·�r d�r. (4)

The effect of a finite transverse size will be discussed in Sect. 3.4. Note, however, that exper-
imentally transverse and longitudinal size effects cannot be separated. Sufficient focusing of
the electron beam is necessary to suppress transverse effects and to obtain a high longitudinal
sensitivity. In the following, only the longitudinal form factor

F (λ) =

∞∫
−∞

S(z)e−2πiz/λ dz (5)

is considered, where the longitudinal charge distribution is the projection of the three-dimensional
distribution onto the z axis: S(z) =

∫
S3D(�r) dxdy. It derives from Eq. (4) if �k is along the z

direction. Using this form factor the radiation spectrum becomes

dU

dλ
=
(

dU

dλ

)
1

(
N + N(N − 1) |F (λ)|2

)
. (6)

The first term is the incoherent part, proportional the number N of electrons. The second part
accounts for coherent emission and is proportional to N(N − 1) ≈ N2.

The theoretical possibility for a three dimensional (tomographic) bunch shape reconstruction
is contained in the freedom of choosing the projection axis. This choice, however, is usually
strongly limited by the emission characteristics of the relativistic source, being often tightly
collimated in the forward direction. A definite - and within certain limits adjustable - observation
angle can be achieved with Čerenkov radiation.

3 Reconstruction of the bunch charge distribution

3.1 Kramers-Kronig relation for phase reconstruction

The reconstruction of the longitudinal particle density distribution S(z) by inverse Fourier trans-
formation is not directly possible because only the magnitude of the form factor can be measured
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through Eq. (6) but not its phase. The Kramers-Kronig relation4 can be utilized to determine
the phase within certain limitations. The application of the Kramers-Kronig technique to longi-
tudinal bunch shape diagnostics was first suggested by Lai and Sievers [Lai97]. The derivation
given here follows the principles outlined in [Woo72].

Since a time shift of the bunch profile results only in an unimportant overall phase factor5

and the electron bunches are of finite length, the time profile can always be shifted such that
S(z) = 0 for z < 0 without loss of generality. Now the definition of the form factor is extended
to the complex frequency domain by defining a complex frequency

ν = νr + i νi

The exponential function eiαν with a real coefficient α is an analytic function of ν. This can be
seen by writing

eiαν = u(νr, νi) + iv(νr, νi), u(νr, νi) = cos(ανr)e−ανi , v(νr, νi) = sin(ανr)e−ανi ,

and obtaining

∂u

∂νr
= −α sin(ανr)e−ανi =

∂v

∂νi
,

∂u

∂νi
= −α cos(ανr)e−ανi = − ∂v

∂νr
.

These are the Cauchy-Riemann equations. Since the partial derivatives are also continuous, the
exponential is analytic. In the form factor integral

F (ν) =

∞∫
0

S(z)e−2πiνz/c dz (7)

the exponential is multiplied with a real function S(z) that does not depend on ν, therefore the
form factor F (ν) is also analytic in the entire complex frequency plane.

The Kramers-Kronig relation connects the real and imaginary part of an analytic function.
In many cases, for example for the complex refractive index, either the real or imaginary part
can be measured and the relation can then be used directly to deduce the other part. In the
present context, however, neither the real nor the imaginary part of the form factor is accessible
but only its magnitude. The determination of the phase requires a particular treatment.

We write

F (ν) = ρ(ν)eiΘ(ν)

with real functions ρ(ν) ≥ 0 and Θ(ν), and take the logarithm:

ln F (ν) = ln ρ(ν) + iΘ(ν).

4In most general terms, the Kramers-Kronig relation connects the real and imaginary part of a response
function of a linear, causal system [Toll56]. The connection to the bunch shape reconstruction problem is made
by writing Eq. (3) as �E(ν) = NF3D(ν) �E1(ν): �E1(ν) is the stimulus, �E(ν) the response, and NF3D(ν) the response
function. This identification might appear far-fetched, but conceptually the stimulus can be identified with the
cause for radiation emission, e.g. the magnetic field for synchrotron radiation or refractive-index changes for
transition radiation. Then �E(ν) is the response of the bunch to this stimulus.

5An overall phase is equivalent to a shift of the longitudinal profile because
�∞
−∞ S(z) exp(2πi(Δz− z)/λ) dz =

�∞
−∞ S(z + Δz) exp(−2πiz/λ) dz. This shift is unobservable since the arrival time of the bunch is in principle not

accessible via a frequency-domain approach due to the time integration from −∞ to +∞.
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Figure 4 Integration contour C for evaluating the Kramers-Kronig relations by using the
residue theorem. The integral over the large semicircle LSC vanishes in the limit of an infinite
radius.

The two Cauchy-Riemann equations for F (ν) require that(
∂ρ

∂νr
− ρ

∂Θ
∂νi

)
cos Θ =

(
∂ρ

∂νi
+ ρ

∂Θ
∂νr

)
sin Θ ∧

(
∂ρ

∂νi
+ ρ

∂Θ
∂νr

)
cos Θ =

(
− ∂ρ

∂νr
+ ρ

∂Θ
∂νi

)
sin Θ.

By multiplying the first equation with cos Θ and the second with sinΘ and then subtracting
both, the terms in brackets are found to vanish individually.6 These are just the Cauchy-Riemann
equations for ln F (ν). Therefore, as long as ρ(ν) does not vanish, also the logarithm is analytic.
This property is used in the following derivations. The effect of zeros in the form factor is
considered in Sect. 3.3.

The magnitude ρ(ν) of the form factor can be derived from the power spectrum Eq. (6)
for real positive frequencies. A severe problem arises because the form factor vanishes at high
frequencies, as the bunch shape can only contain structures of finite width. The logarithm will
then diverge. For this reason an auxiliary function f(ν) is defined by

f(ν) =
(ν0ν − i2) ln F (ν)
(ν2 − i2)(ν0 − ν)

, |f(ν)| =
|ν0ν − i2|

√
ln2 ρ(ν) + Θ2(ν)

|ν2 − i2| · |ν0 − ν| ,

where i in italics is defined by i = i s−1 to be dimensionally correct. The function f(ν) is a
product of analytic functions and as such analytic, except at the isolated singularities at ν = ν0

and ν = ±i.
The residue theorem will now be applied for the closed clockwise contour C shown in Fig. 4:
∮
C

f(ν) dν =
∮
C

(ν0ν − i2) ln F (ν)
(ν + i)(ν − i)(ν0 − ν)

dν = −2πi
(iν0 + i2) ln F (−i)

2i(ν0 + i)
= −iπ ln F (−i). (8)

Due to the assumption that ρ(ν) does not vanish, the integrand has only one pole at ν = −i inside
the contour. The contour integral can be broken down into integrals over the large semicircle
LSC, over the small semicircle SSC and a principal value integral over the real axis, indicated
by P:

∮
C

f(ν) dν =
∫

LSC

f(ν) dν +
∫

SSC

f(ν) dν + P
∞∫

−∞
f(νr) dνr. (9)

6Thanks to H. Delsim-Hashemi for pointing this out to us.
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The prerequisite that S(z) = 0 for z < 0 assures that only positive z values appear in Eq. (7).
This implies that the form factor F (ν) is bounded in the lower half plane (νi < 0) by virtue
of the real part of the exponential, exp(2πνiz/c): it vanishes for νi → −∞. It also vanishes for
|νr| → ∞ for all practical cases, since the charge distribution will not contain infinitely fine
structures, as was already mentioned above. It can thus be assumed that ρ(ν) drops faster than
some negative power at large |ν|,

ρ(ν) < b|ν|−α for |ν| → ∞,

with an exponent α > 0. This implies that the contour integral over the large semicircle LSC in
the lower half complex plane vanishes in the limit of an infinite radius:

lim
|ν|→∞

∣∣∣∣∣∣
∫

LSC

f(ν) dν

∣∣∣∣∣∣ ≤ lim
|ν|→∞

π∫
0

|f(ν)| |ν| dϕ = lim
|ν|→∞

παν0 ln |ν|
|ν| = 0 (ν = |ν|eiϕ). (10)

The integral over the small semicircle, which is centered at the real frequency ν0 > 0, can be
evaluated by writing f(ν) = g(ν)/(ν0 − ν), where g(ν) is a continuous function in the vicinity
of ν0, and by setting ν0 − ν = ε eiϕ. In the limit ε → 0 one obtains

∫
SSC

f(ν) dν ≈ g(ν0)
∫

SSC

1
ν0 − ν

dν = g(ν0)

0∫
π

1
εeiϕ

εeiϕ i dϕ = iπg(ν0) = iπ ln F (ν0). (11)

Inserting the results from Eq. (8), Eq. (10) and Eq. (11) into Eq. (9) yields

P
∞∫

−∞
f(νr) dνr + iπ ln F (ν0) = −iπ ln F (−i).

We take the real part of this equation and use the fact that F (−i) is a real number, which follows
from Eq. (7). Then, by dropping the index r as from now on only real frequencies are involved,

Θ(ν0) =
1
π
P

∞∫
−∞

(νν0 − i2) ln ρ(ν)
(ν2 − i2)(ν0 − ν)

dν.

The integration can be restricted to positive frequencies by using the property of the complex
form factor Eq. (7) that F ∗(ν) = F (−ν) for real ν and hence ρ(−ν) = ρ(ν), which implies

0∫
−∞

(νν0 − i2) ln ρ(ν)
(ν2 − i2)(ν0 − ν)

dν =

∞∫
0

(−νν0 − i2) ln ρ(ν)
(ν2 − i2)(ν0 + ν)

dν.

The result is

Θ(ν0) =
2ν0

π
P

∞∫
0

ln ρ(ν)
ν2
0 − ν2

dν.

The singularity at ν0 can be removed by subtracting the vanishing quantity

2ν0

π
P

∞∫
0

ln ρ(ν0)
ν2
0 − ν2

dν =
2ν0 ln ρ(ν0)

π
lim
ε→0

⎛
⎝ ν0−ε∫

0

1
ν2
0 − ν2

dν +

∞∫
ν0+ε

1
ν2
0 − ν2

dν

⎞
⎠
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=
ln ρ(ν0)

π
lim
ε→0

(
ln

ν0 + ν

ν0 − ν

∣∣∣∣
ν0−ε

0

+ ln
ν0 + ν

ν − ν0

∣∣∣∣
∞

ν0+ε

)
= 0.

Finally, the Kramers-Kronig relation for phase reconstruction of the form factor becomes

Θ(ν0) =
2ν0

π

∞∫
0

ln(ρ(ν)/ρ(ν0))
ν2
0 − ν2

dν. (12)

There is indeed no longer a singularity at ν = ν0, as can be verified by a Taylor expansion of
ln ρ(ν) about ν0 (unless ρ(ν0) vanishes, in which case the phase is meaningless).

The longitudinal bunch charge distribution follows from the inverse Fourier integral Eq. (5)

S(z) =
1
c

∞∫
−∞

F (ν)e2πiνz/cdν =
1
c

∞∫
0

(
F (ν)e2πiνz/c + F (−ν)e−2πiνz/c

)
dν

=
1
c

∞∫
0

(
F (ν)e2πiνz/c + F ∗(ν)e−2πiνz/c

)
dν

Hence

S(z) =
2
c

∞∫
0

ρ(ν) cos
(

2πν

c
z + Θ(ν)

)
dν. (13)

The integration extends over all frequencies from zero to infinity. As any measurement will cover
only a limited range, suitable extrapolations to small and large frequencies are usually needed
in practice.

The normalized time profile St(t) of the electron bunch follows by using z = ct, valid for
highly relativistic particles:

St(t) = 2

∞∫
0

ρ(ν) cos (2πν t + Θ(ν)) dν. (14)

3.2 Practical examples for bunch shape reconstructions

To illustrate the applicability of the phase reconstruction technique, examples are given in Fig. 5
for three bunch shapes: a Gaussian with σz=300 µm, a double Gaussian with σz,1=50 µm and
σz,2=300 µm, and a bunch with a Gaussian head (σz=50µm) and an exponential tail (1 mm
decay length). The form factors were calculated for 500 frequencies between a lower value of
100 GHz or 400 GHz, respectively, and an upper value of 5 THz. Using the absolute values of the
theoretical form factors, the phases were determined according to Eq. (12) and the shapes were
reconstructed with Eq. (13). A simple low-frequency extrapolation ρ(ν) = exp(−αν2) was used,
with α chosen to join smoothly the data at 100 GHz or 400 GHz, respectively. No high-frequency
extrapolation was applied. As can be seen from the figure, the reconstruction works well for all
shapes if the lower frequency cut-off of 100 GHz is used. However, severe distortions occur for a
lower frequency limit at 400 GHz, except for the 300 µm simple Gaussian bunch for which the
Gaussian extrapolation is obviously very good.
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Figure 5 Original (dash-dot) and reconstructed (solid) bunch shapes. The low-frequency ex-
trapolation is ρ(ν) = exp(−αν2), joined at 100 GHz on the top and at 400 GHz on the bottom.
The curves are shifted horizontally such that their maximum values coincide.
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Low- and high-frequency extrapolations are considered in more detail in [Frö05], the effect
of measurement noise is studied in [Men05].

If additional time-domain data on the bunch shape are available from an instrument with
the resolution function I(t), the experimentally measured shape Smeas(t) is related to the true
shape S(t) by a convolution integral,

Smeas(t) =
∫

S(t′)I(t − t′) dt′.

In frequency domain this is written as the product of the Fourier transforms,

Smeas(ν) = F (ν)I(ν),

where Eq. (7) has been used. The Fourier transform of the measured shape is almost equal
to the form factor if I(ν) is close to unity. In this case, the low-frequency extrapolation can
be replaced by measured data. Assuming for the resolution function a Gaussian with width
σinstr, the measuring instrument will act as a low-pass filter, with I(ν) dropping to 1/e at
the frequency c/(

√
2πσinstr). For a streak camera with 200 fs rms resolution, for example, this

frequency is 800 GHz.

3.3 On zeros in the form factor

An essential prerequisite in the Kramers-Kronig analysis is the absence of zeros in the form factor.
This is true for a Gaussian bunch whose form factor is also of Gaussian shape and vanishes
nowhere in the complex ν plane. However, already a truncated Gaussian charge distribution
possesses a form factor containing zeros. The existence of zeros can therefore not be excluded
for realistic bunch shapes.

Suppose the form factor has a simple zero at some complex frequency in the lower half plane,
μ = μr + iμi with μi < 0. Then the new function

F̃ (ν) = F (ν) · ν − μ∗

ν − μ

will be nonzero at ν = μ. It will be shown below that F̃ (ν) and F (ν) have the same magnitude
on the real axis.

Let us now admit an arbitrary number zeros of the form factor and label them by μn. A new
form factor without zeros is defined by

F̃ (ν) = F (ν)
∏
n

Bn(ν) with Bn(ν) =
ν − μ∗

n

ν − μn
.

We have shifted all zeros μn of the original form factor into the product which is called the
Blaschke product7. The magnitude of each term is

|Bn(ν)| =

√
|ν|2 + |μn|2 − 2(νrμn,r − νiμn,i)
|ν|2 + |μn|2 − 2(νrμn,r + νiμn,i)

.

On the real frequency axis (νi=0) the form factor magnitude is not changed by the Blaschke
product since |Bn(ν)|=1, and therefore ρ(ν) = |F (ν)| = |F̃ (ν)|. Furthermore, |Bn(ν)| < 1 in the

7The Blaschke product obviously cannot remove zeros which are on the real frequency axis. Such zeros of the
form factor where ρ(ν) = 0, however, do not contribute to the reconstructed bunch shape according to Eq. (13).

11



lower half plane (νi < 0), so F̃ (ν) remains bounded. The Kramers-Kronig treatment can thus
be applied to the new, zeroless form factor F̃ (ν). For a rigorous proof that indeed all zeros of
the form factor can be absorbed into the Blaschke product see the references quoted in [Toll56].

On the real frequency axis the Blaschke product has unity modulus and can therefore be
expressed as a phase factor exp(iΘB(ν)). The real phase is given by

ΘB(ν) =
∑
n

arctan
	(Bn(ν))

(Bn(ν))

=
∑

n

arctan
2μn,i(ν − μn,r)

(ν − μn,r)2 − μ2
n,i

. (15)

This Blaschke phase is a monotonic function of frequency. To see this consider a single term
Bn(ν) and suppress the subscript n for brevity:

d
dν

(
2μi(ν − μr)

(ν − μr)2 − μ2
i

)
= −2μi

(ν − μr)2 + μ2
i(

(ν − μr)2 − μ2
i

)2 > 0 for μi < 0.

Hence also dΘB/dν > 0 for all real frequencies ν, provided the imaginary part of μ is negative.
A further restriction on the contribution from the Blaschke product results from a symmetry

of the complex form factor that follows from Eq. (7): F ∗(−ν∗) = F (ν). A zero located at μ
requires always another one at −μ∗ (mirrored at the imaginary frequency axis). The phase
contribution from such a pair is

Θpair(ν) = arctan
4νμi

(
ν2 − |μ|2)

ν4 + |μ|4 − 2ν2μ2
r − 6ν2μ2

i

.

If |μ| � |ν|, Θpair(ν) ≈ 4μiν/|μ|2. A contribution proportional to frequency corresponds, ac-
cording to Eq. (13), to a mere shift of the reconstructed profile, given here by 2cμi/(π|μ|2). For
this reason, only complex zeros which are not too far away from the frequency range used for
the reconstruction contribute to the bunch shape.

We have seen that the Blaschke product leaves the function ρ(ν) invariant on the real axis.
Therefore it is not possible to deduce the Blaschke contribution from a measurement of the
absolute value of the form factor. This is the deeper reason why the phase of the form factor and
thereby the bunch shape cannot be uniquely reconstructed from spectral intensity measurements
only. The Kramers-Kronig phase Eq. (12) is sometimes referred to as the canonical phase or the
minimal phase.

To investigate the influence of zeros in the form factor we consider a σz =300 µm Gaussian with
a superimposed sinusoidal oscillation. The mathematical procedure is described in Appendix
D. The form factor is found to contain infinitely many zeros in the lower half of the complex
frequency plane. The Blaschke phase has been computed numerically, see Fig. 10 in the Appen-
dix. Here we restrict our analysis to a computation of the Kramers-Kronig phase Eq. (12) and
disregard the zeros in the form factor. Fig. 6 shows that the original particle distribution is well
reproduced if just the Kramers-Kronig phase is used in Eq. (13) and the Blaschke phase is ig-
nored. The modification of the bunch shape by the Blaschke phase is not very important and has
in practice certainly much less influence than the uncertainties which are due to measurement
errors and the low- and high-frequency extrapolations of the measured spectral data.

3.4 Transverse size effects

The form factor for a general three-dimensional charge distribution was calculated in Sect. 2 in
far-field approximation, see Eq. (4). Assuming for illustrative purposes that the charge distrib-
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Figure 6 Original (dash-dot) and reconstructed (solid) bunch shape for a Gaussian with a
superimposed sinusoidal oscillation. A low-frequency extrapolation ρ(ν) = exp(−αν2) is joined
at 100 GHz.

ution can be written in product form8, the form factor can also be factorized. For the case of a
longitudinal and transverse Gaussian distribution with rotational symmetry about the z axis,

S3D(x, y, z) =
1

2πσ2
t

exp
(
−x2 + y2

2σ2
t

)
1√

2πσz

exp
(
− z2

2σ2
z

)
,

evaluating Eq. (4) yields

F3D(kx, ky, kz) =
1√

2πσz

1
2πσ2

t

∞∫∫∫
−∞

exp
(
− z2

2σ2
z

− x2 + y2

2σ2
t

− i (kxx + kyy + kzz)
)

dxdydz

= exp
(
−σ2

zk
2
z

2

)
exp

(
−σ2

t (k2
x + k2

y)
2

)
, (16)

where√
k2

x + k2
y =

2π
λ

sin θ, kz =
2π
λ

cos θ,

for an observation angle θ with respect to the z axis. This three-dimensional form factor is plotted
in Fig. 7 for four values of σt and two values of θ. The form factor is reduced to 1/e of its maximum
value (obtained for an infinitely thin line bunch) for a transverse size σt = λ/(

√
2π sin θ).

8This is a good assumption in a straight linac for relativistic electrons with no longitudinal motion and
decoupled transverse betatron oscillations. However, if bunch compressors with magnetic chicanes are installed,
as for FLASH, this factorization is not necessarily possible.
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Figure 7 Influence of the transverse bunch size σt on the form factor after Eq. (16).

Eq. (16) shows that the transverse contribution to the form factor is determined by σt sin θ,
the longitudinal contribution by σz cos θ. For small angles, transverse effects are strongly sup-
pressed. This is generally the case for radiation from highly relativistic electrons which is in-
evitably strongly collimated, typical opening angles being θ ≈ 1/γ � 1 for transition or syn-
chrotron radiation.

This suppression effect can also be seen from Fig. 3: the path length difference from electron
1 and electron i to the observation point P is given by �n · �ri = xi sin θ + zi cos θ, showing again
the weak influence of the transverse size for small angles. This argument is valid in general
for any charge distribution, also if it cannot be factorized. Although the form factor is rather
insensitive to the transverse structure of the electron bunch, the bunches should nevertheless be
well focused if fine details of the longitudinal charge distribution shall be resolved.

A Derivation of the frequency spectrum

The energy density spectrum dU/dν (in units of J/(Hzm2)) at a given position9 is related to
the power density dU/dt through

Utotal =

∞∫
0

dU

dν
dν =

∞∫
−∞

dU

dt
dt, (17)

9As the unit indicates, this and the following quantities are taken per unit area, thus they should read in full
d2U/dνdA. The differential dA is suppressed for brevity, as well as the variable �r: �E(�r, t) ≡ �E(t), etc.
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where Utotal is the energy density (in units of J/m2). The power density is the absolute magnitude
of the Poynting vector �S(t), [�S]=W/m2, which in free space is [Jack99]

�S(t) =
1
μ0

�E(t)× �B(t) = ε0c
(
(�E(t))2�n(t) − (�E(t)·�n(t))�E(t)

)
.

For the second equation the relation �B(t) = 1
c�n(t)× �E(t) has been used which is valid in general

for the radiation of a single accelerated charge, with �n(t) the unit vector from the position of the
charge at retarded time to the observation point. At large distance from the source, the second
term on the right side is absent since then �E(t) is perpendicular to �n(t). With this far-field
condition,

Utotal = ε0c

∞∫
−∞

∣∣∣ �E(t)
∣∣∣2 dt = ε0c

∞∫
−∞

∣∣∣∣∣∣
∞∫

−∞

�E(ν)e2πiνtdν

∣∣∣∣∣∣
2

dt

= ε0c

∞∫
−∞

∞∫
−∞

�E(ν)e2πiνtdν ·
∞∫

−∞

�E∗(ν ′)e−2πiν′tdν ′dt

= ε0c

∞∫∫
−∞

�E(ν)· �E∗(ν ′)
∞∫

−∞
e−2πi(ν′−ν)tdtdνdν ′

= ε0c

∞∫∫
−∞

�E(ν)· �E∗(ν ′)δ(ν ′ − ν)dνdν ′ = ε0c

∞∫
−∞

| �E(ν)|2dν = 2ε0c

∞∫
0

| �E(ν)|2dν.

In the last step �E∗(−ν) = �E(ν) was used, valid since �E(t) is real. Comparing with Eq. (17),

dU

dν
= 2ε0c| �E(ν)|2. (18)

B Basic operation principle of an interferometer

One standard instrument for measuring frequency spectra is the interferometer. The basic op-
eration principle of such a device is described in this section for the example of a Michelson
interferometer. It is in essence a proof of the Wiener-Khinchin theorem.

The layout of a Michelson interferometer with the relations of electric field before and after
the beam splitter is sketched in Fig. 8. A perfect splitter is assumed, dividing the incoming power
in two equal parts. Thus the electric field amplitudes of the two outgoing beams are smaller by
a factor of

√
2 than the incoming. Due to the symmetric beam splitter characteristic, on average

half the intensity is reflected back to the source, as will be shown below.
The time dependent electric field reaching the detector Eout(t) is therefore related to the

incoming field Ein(t) by

Eout(t) =
Ein(t)√

4
+

Ein(t − 2Δx/c)√
4

.

A slow detector that integrates the instantaneous intensity over the radiation pulse will measure
an energy Uout as function of mirror displacement Δx (the interferogram) given by

Uout(Δx) =

∞∫
−∞

ε0c |Eout(t)|2 dt
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Figure 8 Sketch of the electric field relations in an interferometer

= ε0c

∞∫
−∞

E2
in(t)
4

+
E2

in(t − 2Δx/c)
4

+
1
2
Ein(t)Ein(t − 2Δx/c) dt

=
Uin

2
+

ε0c

2

∞∫
−∞

∞∫
−∞

Ein(ν)e2πiνtdν

∞∫
−∞

Ein(ν ′)e2πiν′(t−2Δx/c)dν ′ dt

=
Uin

2
+

ε0c

2

∞∫
−∞

∞∫
−∞

Ein(ν)Ein(ν ′)e−4πiν′Δx/c

∞∫
−∞

e2πi(ν+ν′)t dt dν ′dν

=
Uin

2
+

ε0c

2

∞∫
−∞

∞∫
−∞

Ein(ν)Ein(ν ′)e−4πiν′Δx/c δ(ν + ν ′) dν ′dν

=
Uin

2
+

ε0c

2

∞∫
−∞

Ein(ν)Ein(−ν)e4πiνΔx/c dν

=
Uin

2
+

ε0c

2

∞∫
−∞

|Ein(ν)|2 e4πiνΔx/c dν

=
Uin

2
+

1
4

∞∫
−∞

(
dU

dν

)
in

e4πiνΔx/c dν (from Eq. (18))

=
Uin

2
+

1
2

∞∫
0

(
dU

dν

)
in

cos
(

4πνΔx

c

)
dν. (19)
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The Fourier transform relation between Ein(ν) and Ein(t) is defined through Eq. (2). The last
line follows from the symmetry of (dU/dν)in. The units of Uout(Δx) and Uin are J/m2.

Apart from the constant offset at Uin/2, the interferogram is the cosine Fourier transform
of the incoming frequency spectrum which can therefore be recovered by the inverse transform.
The Fourier transforms are real, therefore no phase-retrieval problems occur as for the bunch
shape reconstruction in Sect. 3.1.

The integral averaged over Δx vanishes, so the detector sees only half of the incoming
intensity, the other half is reflected back to the source.

A Martin-Puplett interferometer works along the same principles, but no radiation that
enters the device is going back to the source10, allowing an easy removal of intensity fluctuations.
The difference interferogram of the two detectors shows no offset. Consult [Frö05] for detailed
information on theoretical background and on practicalities.

C Interferogram of a Gaussian bunch

The form factor F (λ) of a Gaussian line bunch with normalized longitudinal charge distribution

S(z) =
1√
2πσ

exp
(
− z2

2σ2

)
is, from Eq. (5),

F (λ) = exp
(
−2π2σ2

λ2

)
.

In the following, the number of particles is assumed to be large so that the coherent part of the
total emission spectrum Eq. (6) dominates.

Taking first a single-electron spectrum (dU/dλ)in independent of λ, for example from tran-
sition radiation, the interferogram from Eq. (19) will be Gaussian,

Uout(Δx) − Uin

2
∼ exp

(
− Δx2

2
(
σ/

√
2
)2
)

,

with a width a factor of
√

2 smaller than the width of the charge distribution.
As second example the spectrum of synchrotron radiation from circular motion is used. In

the forward direction for long wavelengths11 λ � λc it is given by [Jack99](
dU

dλ

)
in

=
31/3e2

2ε0

1
d2λ2

(
Γ(2/3)

π

)2(πR

λ

)2/3

∼ λ− 8
3 ,

where Γ denotes the Gamma function and d is the distance to the observation point. Here, the
interferogram will be

Uout(Δx) − Uin

2
∼

∞∫
0

ν2/3 exp
(
−4π2σ2ν2

c2

)
cos
(

4πνΔx

c

)
dν.

This cannot be evaluate analytically. In Fig. 9, a comparison of this case with that of a flat
single electron spectrum for a Gaussian bunch with σ=300 µm is shown. A dip appears for
the synchrotron radiation case and the full width at half maximum is decreased by about 30%
compared to the flat spectrum.

10However, since linearly polarized radiation is needed, an input polarizer is used. For unpolarized radiation,
half of the intensity is still lost, but independent of the mirror position Δx.

11For the parameters used in Fig. 2, λc = 409 nm.
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synchrotron radiation (solid line) or flat (dashed line) single electron spectrum.

D A form factor with complex zeros

Consider a charge distribution consisting of a Gaussian with a sine-like oscillation of modulation
1/p, p > 0, and modulation wavelength λ0,

S(z) =
1√
2πσ

exp
(−z2

2σ2

)(
1 − 1

p
exp

(−σ2

2λ2
0

)
+

1
p

cos
z

λ0

)
, (20)

which in this form is correctly normalized according to Sect. 2. It is non-negative for all z as
long as

p ≥ exp
(−σ2

2λ2
0

)
+ 1. (21)

The corresponding form factor is

F (ν) =

∞∫
−∞

S(z) exp
(−2πiν

c
z

)
dz

=
√

2√
πσ

∞∫
0

exp
(−z2

2σ2

)(
1 − 1

p
exp

(−σ2

2λ2
0

)
+

1
p

cos
z

λ0

)
cos

2πνz

c
dz

= exp
(−2π2σ2ν2

c2

)
+

1
p

exp
(
−2π2σ2ν2

c2
− σ2

2λ2
0

)(
cosh

2πσ2ν

cλ0
− 1
)

.

The symmetry of S(z) with respect to z = 0 and standard Fourier integrals from [Bro91] have
been used. Searching now for zeros in the complex plane, i.e. F (ν) = 0 for ν = νr + iνi, leads to
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the condition

1 − p exp
(

σ2

2λ2
0

)
= cosh

2πσ2ν

cλ0
,

or, using the abbreviation α=2πσ2/(cλ0) and the relation cosh αν=(eαν + e−αν)/2,

2 − 2p exp
(

σ2

2λ2
0

)
= eα(νr+iνi) + e−α(νr+iνi)

= eανr (cos ανi + i sin ανi) + e−ανr (cos ανi − i sin ανi) .

The left-hand side of this equation is real, so(
eανr − e−ανr

)
sinανi = 0(

eανr + e−ανr
)
cos ανi = 2 − 2p exp

(
σ2

2λ2
0

)
≤ − exp

(−σ2

2λ2
0

)
(22)

must hold for any complex zero, where the inequality is due to the restriction Eq. (21).
Solutions for sinανi=0 require thus cos ανi=-1 or ανi = (2m + 1)π with m an integer, and

additionally that the right-hand side of Eq. (22) is smaller than -2, as the minimum value of the
sum in brackets on the right is +2. If this is fulfilled, then

νr =
1
α

ln

(
p exp

(
σ2

2λ2
0

)(
1 ±

√
1 − 2

p
exp

(−σ2

2λ2
0

))
− 1

)
. (23)

In case the second term under the root is much smaller than unity, this expression can be
simplified by expanding the root to first order for the positive sign or to second order for the
negative sign, yielding

νr ≈ ±
(

cλ0 ln 2p
2πσ2

+
c

4πλ0

)
.

As an example, the oscillating Gaussian plotted in Fig. 5 has σ=300 µm, λ0=20µm and p=10,
so that the approximation holds well and zeros occur for νr=±1.2 THz. The Blaschke phase
Eq. (15) for this case and its nonlinear contribution are plotted in Fig. 10. The first 2000 zeros
in the negative complex plane were included in this calculation. Increasing the number of zeros
further increases the phase itself, but does not change the nonlinear contribution significantly
anymore. This behaviour was found in Sect. 3.3: zeros far away from the real axis contribute
only linearly to the phase.

If the right-hand side of Eq. (22) lies between -2 and 0, Eq. (23) does not yield a real result.
In this case zeros of the form factor are located on the imaginary axis, νr=0, at

νi = ± 1
α

arccos
(

1 − p exp
(

σ2

2λ2
0

))
+

2πm

α
for any integer m.

For every allowed parameter set σ, λ0 and p there will therefore be either one or two values
of νr for which an infinite number of zeros occur for values of νi given above.
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